
llvmlite Documentation
Release 0.37.0rc2-dirty

Continuum Analytics

Jul 19, 2021

CONTENTS

1 Philosophy 3

2 LLVM compatibility 5

3 API stability 7

Python Module Index 67

Index 69

i

ii

llvmlite Documentation, Release 0.37.0rc2-dirty

A lightweight LLVM-Python binding for writing JIT compilers

llvmlite provides a Python binding to LLVM for use in Numba. Numba previously relied on llvmpy.

Llvmpy became hard to maintain because:

• It has a cumbersome architecture.

• The C++11 requirement of recent LLVM versions does not go well with the compiler and runtime ABI require-
ments of some Python versions, especially under Windows.

Llvmpy also proved to be responsible for a sizable part of Numba’s compilation times, because of its inefficient layering
and object encapsulation. Fixing this issue inside the llvmpy codebase seemed a time-consuming and uncertain task.

The Numba developers decided to start a new binding from scratch, with an entirely different architecture, centered
around the specific requirements of a JIT compiler.

CONTENTS 1

http://numba.pydata.org/
http://www.llvmpy.org/

llvmlite Documentation, Release 0.37.0rc2-dirty

2 CONTENTS

CHAPTER

ONE

PHILOSOPHY

While llvmpy exposed large parts of the LLVM C++ API for direct calls into the LLVM library, llvmlite takes an entirely
different approach. Llvmlite starts from the needs of a JIT compiler and splits them into two decoupled tasks:

• Construction of a Module, function by function, Instruction by instruction.

• Compilation and optimization of the module into machine code.

The construction of an LLVM module does not call the LLVM C++ API. Rather, it constructs the LLVM intermediate
representation (IR) in pure Python. This is the role of the IR layer.

The compilation of an LLVM module takes the IR in textual form and feeds it into LLVM’s parsing API. It then returns
a thin wrapper around LLVM’s C++ module object. This is the role of the binding layer.

Once parsed, the module’s source code cannot be modified, which loses the flexibility of the direct mapping of C++
APIs into Python that was provided by llvmpy but saves a great deal of maintenance.

3

http://www.llvmpy.org/

llvmlite Documentation, Release 0.37.0rc2-dirty

4 Chapter 1. Philosophy

CHAPTER

TWO

LLVM COMPATIBILITY

Despite minimizing the API surface with LLVM, llvmlite is impacted by changes to LLVM’s C++ API, which can
occur at every feature release. Therefore, each llvmlite version is targeted to a specific LLVM feature version and
works across all given bugfix releases of that version.

EXAMPLE: Llvmlite 0.12.0 works with LLVM 3.8.0 and 3.8.1, but it does not work with LLVM 3.7.0 or 3.9.0.

Numba’s requirements determine which LLVM version is supported.

5

llvmlite Documentation, Release 0.37.0rc2-dirty

6 Chapter 2. LLVM compatibility

CHAPTER

THREE

API STABILITY

At this time, we reserve the possibility of slightly breaking the llvmlite API at each release, for the following reasons:

• Changes in LLVM behaviour, such as differences in the IR across versions.

• As a young library, llvmlite has room for improvement or fixes to the existing APIs.

3.1 Installation

The Numba/llvmlite stack consists of the following major components:

• Numba is the compiler package, this depends on llvmlite.

• llvmlite is a lightweight binding package to the LLVM APIs, it depends on LLVM.

• LLVM is the JIT compiler framework for producing executable code from various inputs.

All components must be compiled in order to be used. And, since each component on the stack depends on the previous
one, you need to compile LLVM in order to compile llvmlite in order to compile Numba. The LLVM package is a
significant size and may take significant time (magnitude, roughly an hour) and skill to compile depending on the
platform.

3.1.1 Pre-built binaries

As mentioned above, building LLVM for llvmlite is challenging. Installing a binary package that has been built and
tested is strongly recommend.

Official Conda packages are available in the Anaconda distribution:

conda install llvmlite

Development releases are built from the Git master branch and uploaded to the Numba development channel on Ana-
conda Cloud:

conda install -c numba/label/dev llvmlite

Binary wheels are also available for installation from PyPI:

pip install llvmlite

Development releases of binary wheels are not made available.

Contrary to what might be expected, the llvmlite packages built by the Numba maintainers do not use any LLVM shared
libraries that may be present on the system, and/or in the Conda environment. The parts of LLVM required by llvmlite

7

http://docs.continuum.io/anaconda/index.html
http://numba.pydata.org/
https://anaconda.org/numba
https://anaconda.org/numba
https://pypi.org/project/llvmlite/

llvmlite Documentation, Release 0.37.0rc2-dirty

are statically linked at build time. As a result, installing llvmlite from a binary package from the Numba channel does
not also require the end user to install LLVM. (For more details on the reasoning behind this, see: Why Static Linking
to LLVM?). Note however also that llvmlite packages compiled by other parties, e.g. conda-forge may split this into
and llvmlite and llvm package and link dynamically.

Conda packages:

The Numba maintainers ship to the Numba channel:

• Numba packages

• llvmlite packages

• llvmdev packages (this contains a build of LLVM)

The llvmdev packages are not needed at runtime by llvmlite packages as llvmlite’s dynamic libraries are statically linked
(see above) at compile time against LLVM through the dependency on the llvmdev package.

The Anaconda distribution and conda-forge channels ship:

• Numba packages

• llvmlite packages

• LLVM split into runtime libraries (package called llvm) and compile time libraries/headers etc this contains a
build of LLVM (package called llvmdev)

At compile time the llvmdev and llvm packages are used to build llvmlite and llvmlite’s dynamic libraries are dynam-
ically linked against the libraries in the llvm meta-package. This means at runtime llvmlite depends on the llvm
package which has the LLVM shared libraries in it (it’s actually a package called libllvm that contains the DSOs, but
the llvm package is referred to so as to get the run_exports).

Using pip

The Numba maintainers ship binary wheels:

• Numba wheels (x86* architectures)

• llvmlite wheels (x86* architectures)

Note that the llvmlite wheels are statically linked against LLVM, as per the conda packages on the Numba channel.
This mitigates the need for a LLVM based binary wheel. Note also that this, as of version 0.36, does not include the
aarch64 architectures, for example installation on a Raspberry Pi is not supported.

The Numba maintainers ship an sdist for:

• Numba

• llvmlite

Note that there is no sdist provided for LLVM. If you try and build llvmlite from sdist you will need to bootstrap
the package with your own appropriate LLVM.

8 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

How this ends up being a problem.

1. If you are on an unsupported architecture (i.e. not x86*) or unsupported Python version for binary wheels (e.g.
Python alphas) then pip will try and build Numba from sdist which in turn will try and build llvmlite from
sdist. This will inevitably fail as the llvmlite source distribution needs an appropriate LLVM installation to
build.

2. If you are using pip < 19.0 then manylinux2010 wheels will not install and you end up in the situation in 1.
i.e. something unsupported so building from sdist.

Historically, this issues has manifested itself as the following error message, which included here verbatim for future
reference:

FileNotFoundError: [Errno 2] No such file or directory: 'llvm-config'

Things to “fix” it. . .

1. If you are using pip < 19.0 and on x86*, then update it if you can, this will let you use the manylinux2010
binary wheels.

2. If you are on an unsupported architecture, for example Raspberry Pi, please use conda if you have that available.

3. Otherwise: you will probably need to build from source, this means providing an LLVM. If you have conda
available you could use this to bootstrap the installation with a working llvm/llvmdev package. Learn more
about compiling from source in the section on Building manually below. and in particular note the use of the
LLVM_CONFIG environment variable for specifying where your LLVM install is.

What to be aware of when using a system provided LLVM package.

When using a system provided LLVM package, there are a number of things that could go wrong:

1. The LLVM package may not work with Numba/llvmlite at all.

2. If it does work to some degree it is unlikely the carry the correct patches for Numba/llvmlite to work entirely
correctly.

3. Since the Numba/llvmlite maintainers may not know how the package was compiled it may be more difficult to
get help when things do go wrong.

3.1.2 Building manually

Building llvmlite requires first building LLVM. Do not use prebuilt LLVM binaries from your OS distribution or the
LLVM website! There will likely be a mismatch in version or build options, and LLVM will be missing certain patches
that are critical for llvmlite operation.

3.1. Installation 9

llvmlite Documentation, Release 0.37.0rc2-dirty

Prerequisites

Before building, you must have the following:

• On Windows:

– Visual Studio 2015 (Update 3) or later, to compile LLVM and llvmlite. The free Express edition is accept-
able.

– CMake installed.

• On Linux:

– g++ (>= 4.8) and CMake

– If building LLVM on Ubuntu, the linker may report an error if the development version of libedit is not
installed. If you run into this problem, install libedit-dev.

• On Mac:

– Xcode for the compiler tools, and CMake

Compiling LLVM

If you can build llvmlite inside a conda environment, you can install a prebuilt LLVM binary package and skip this
step:

conda install -c numba llvmdev

The LLVM build process is fully scripted by conda-build, and the llvmdev recipe is the canonical reference for building
LLVM for llvmlite. Please use it if at all possible!

The manual instructions below describe the main steps, but refer to the recipe for details:

1. Download the LLVM 11.1.0 source code.

2. Download or git checkout the llvmlite source code.

3. Decompress the LLVM tar file and apply the following patches from the llvmlite/conda-recipes/ directory.
You can apply each patch using the Linux patch -p1 -i {patch-file} command:

1. llvm-lto-static.patch: Fix issue with LTO shared library on Windows.

2. partial-testing.patch: Enables additional parts of the LLVM test suite.

3. intel-D47188-svml-VF.patch: Add support for vectorized math functions via Intel SVML.

4. expect-fastmath-entrypoints-in-add-TLI-mappings.ll.patch: Fix for a test failure caused by
the previous patch.

5. 0001-Revert-Limit-size-of-non-GlobalValue-name.patch: Revert the limit put on the length of
a non-GlobalValue name.

4. For Linux/macOS:

1. export PREFIX=desired_install_location CPU_COUNT=N (N is number of parallel compile tasks)

2. Run the build.sh script in the llvmdev conda recipe from the LLVM source directory.

5. For Windows:

1. set PREFIX=desired_install_location

2. Run the bld.bat script in the llvmdev conda recipe from the LLVM source directory.

10 Chapter 3. API stability

http://www.cmake.org/
http://www.cmake.org/
http://www.cmake.org/
https://conda.io/docs/user-guide/tasks/build-packages/index.html
https://github.com/numba/llvmlite/tree/master/conda-recipes/llvmdev
https://github.com/llvm/llvm-project/releases/download/llvmorg-11.1.0/llvm-11.1.0.src.tar.xz
https://github.com/numba/llvmlite
https://github.com/numba/llvmlite/blob/master/conda-recipes/llvmdev/build.sh
https://github.com/numba/llvmlite/blob/master/conda-recipes/llvmdev/bld.bat

llvmlite Documentation, Release 0.37.0rc2-dirty

Compiling llvmlite

1. To build the llvmlite C wrapper, which embeds a statically linked copy of the required subset of LLVM, run the
following from the llvmlite source directory:

python setup.py build

2. If your LLVM is installed in a nonstandard location, set the LLVM_CONFIG environment variable to the loca-
tion of the corresponding llvm-config or llvm-config.exe executable. This variable must persist into the
installation of llvmlite—for example, into a Python environment.

EXAMPLE: If LLVM is installed in /opt/llvm/ with the llvm-config binary located at /opt/llvm/bin/
llvm-config, set LLVM_CONFIG=/opt/llvm/bin/llvm-config.

3. If you wish to build against an unsupported LLVM version, set the environment variable
LLVMLITE_SKIP_LLVM_VERSION_CHECK to non-zero. Note that this is useful for e.g. testing new ver-
sions of llvmlite, but support for llvmlite built in this manner is limited/it’s entirely possible that llvmlite will
not work as expected. See also: why llvmlite doesn’t always support the latest release(s) of LLVM.

Installing

1. To validate your build, run the test suite by running:

python runtests.py

or:

python -m llvmlite.tests

2. If the validation is successful, install by running:

python setup.py install

Installing from sdist

If you don’t want to do any modifications to llvmlite itself, it’s also possible to use pip to compile and install llvmlite
from the latest released sdist package. You’ll still need to point to your llvm-config if it’s not in the PATH:

LLVM_CONFIG=/path/to/llvm-config pip3 install llvmlite

This should work on any platform that runs Python and llvm. It has been observed to work on arm, ppc64le, and also
pypy3 on arm.

x86 users will need to pass an extra flag (see issue #522):

LLVM_CONFIG=/path/to/llvm-config CXXFLAGS=-fPIC pip3 install llvmlite

This is known to work with pypy3 on Linux x64.

It’s also possible to force pip to rebuild llvmlite locally with a custom version of llvm :

LLVM_CONFIG=/path/to/custom/llvm-config CXXFLAGS=-fPIC pip3 install --no-binary :all:
llvmlite

3.1. Installation 11

https://github.com/numba/llvmlite/issues/522

llvmlite Documentation, Release 0.37.0rc2-dirty

3.2 User guide

3.2.1 IR layer—llvmlite.ir

The llvmlite.ir module contains classes and utilities to build the LLVM intermediate representation (IR) of native
functions.

The provided APIs may sometimes look like LLVM’s C++ APIs, but they never call into LLVM, unless otherwise
noted. Instead, they construct a pure Python representation of the IR.

To use this module, you should be familiar with the concepts in the LLVM Language Reference.

Types

• Atomic types

• Aggregate types

• Other types

All values used in an LLVM module are explicitly typed. All types derive from a common base class Type. You can
instantiate most of them directly. Once instantiated, a type should be considered immutable.

class llvmlite.ir.Type
The base class for all types. Never instantiate it directly. Types have the following methods in common:

• as_pointer(addrspace=0)
Return a PointerType pointing to this type. The optional addrspace integer allows you to choose a
non-default address space—the meaning is platform dependent.

• get_abi_size(target_data)
Get the ABI size of this type, in bytes, according to the target_data—an llvmlite.binding.
TargetData instance.

• get_abi_alignment(target_data)
Get the ABI alignment of this type, in bytes, according to the target_data—an llvmlite.binding.
TargetData instance.

NOTE: get_abi_size() and get_abi_alignment() call into the LLVM C++ API to get the re-
quested information.

• __call__(value)
A convenience method to create a Constant of this type with the given value:

>>> int32 = ir.IntType(32)
>>> c = int32(42)
>>> c
<ir.Constant type='i32' value=42>
>>> print(c)
i32 42

12 Chapter 3. API stability

https://releases.llvm.org/11.0.0/docs/LangRef.html

llvmlite Documentation, Release 0.37.0rc2-dirty

Atomic types

class llvmlite.ir.PointerType(pointee, addrspace=0)
The type of pointers to another type.

Pointer types expose the following attributes:

• addrspace
The pointer’s address space number. This optional integer allows you to choose a non-default address
space—the meaning is platform dependent.

• pointee
The type pointed to.

class llvmlite.ir.IntType(bits)
The type of integers. The Python integer bits specifies the bitwidth of the integers having this type.

width
The width in bits.

class llvmlite.ir.HalfType
The type of half-precision, floating-point, real numbers.

class llvmlite.ir.FloatType
The type of single-precision, floating-point, real numbers.

class llvmlite.ir.DoubleType
The type of double-precision, floating-point, real numbers.

class llvmlite.ir.VoidType
The class for void types. Used only as the return type of a function without a return value.

Aggregate types

class llvmlite.ir.Aggregate
The base class for aggregate types. Never instantiate it directly. Aggregate types have the elements attribute in
common.

elements
A tuple-like immutable sequence of element types for this aggregate type.

class llvmlite.ir.ArrayType(element, count)
The class for array types.

• element is the type of every element.

• count is a Python integer representing the number of elements.

class llvmlite.ir.VectorType(element, count)
The class for vector types.

• element is the type of every element.

• count is a Python integer representing the number of elements.

class llvmlite.ir.LiteralStructType(elements[, packed=False])
The class for literal struct types.

• elements is a sequence of element types for each member of the structure.

• packed controls whether to use packed layout.

3.2. User guide 13

llvmlite Documentation, Release 0.37.0rc2-dirty

class llvmlite.ir.IdentifiedStructType
The class for identified struct types. Identified structs are compared by name. It can be used to make opaque
types.

Users should not create new instance directly. Use the Context.get_identified_type method instead.

An identified struct is created without a body (thus opaque). To define the struct body, use the .set_body
method.

set_body(*elems)
Define the structure body with a sequence of element types.

Other types

class llvmlite.ir.FunctionType(return_type, args, var_arg=False)
The type of a function.

• return_type is the return type of the function.

• args is a sequence describing the types of argument to the function.

• If var_arg is True, the function takes a variable number of additional arguments of unknown types after
the explicit args.

EXAMPLE:

int32 = ir.IntType(32)
fnty = ir.FunctionType(int32, (ir.DoubleType(), ir.PointerType(int32)))

An equivalent C declaration would be:

typedef int32_t (*fnty)(double, int32_t *);

class llvmlite.ir.LabelType
The type for labels. You do not need to instantiate this type.

class llvmlite.ir.MetaDataType
The type for Metadata. You do not need to instantiate this type.

NOTE: This class was previously called “MetaData,” but it was renamed for clarity.

Values

• Metadata

• Global values

• Instructions

• Landing pad clauses

A Module consists mostly of values.

llvmlite.ir.Undefined
An undefined value, mapping to LLVM’s undef.

class llvmlite.ir.Value
The base class for all IR values.

14 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

class llvmlite.ir.Constant(typ, constant)
A literal value.

• typ is the type of the represented value—a Type instance.

• constant is the Python value to be represented.

Which Python types are allowed for constant depends on typ:

• All types accept Undefined and convert it to LLVM’s undef.

• All types accept None and convert it to LLVM’s zeroinitializer.

• IntType accepts any Python integer or boolean.

• FloatType and DoubleType accept any Python real number.

• Aggregate types—array and structure types—accept a sequence of Python values corresponding to the
type’s element types.

• ArrayType accepts a single bytearray instance to initialize the array from a string of bytes. This is useful
for character constants.

classmethod literal_array(elements)
An alternate constructor for constant arrays.

• elements is a sequence of values, Constant or otherwise.

• All elements must have the same type.

• Returns a constant array containing the elements, in order.

classmethod literal_struct(elements)
An alternate constructor for constant structs.

• elements is a sequence of values, Constant or otherwise. Returns a constant struct containing the
elements in order.

bitcast(typ)
Convert this pointer constant to a constant of the given pointer type.

gep(indices)
Compute the address of the inner element given by the sequence of indices. The constant must have a
pointer type.

inttoptr(typ)
Convert this integer constant to a constant of the given pointer type.

NOTE: You cannot define constant functions. Use a Function declaration instead.

class llvmlite.ir.Argument
One of a function’s arguments. Arguments have the add_attribute() method.

add_attribute(attr)
Add an argument attribute to this argument. attr is a Python string.

class llvmlite.ir.Block
A Basic block. Do not instantiate or mutate this type directly. Instead, call the helper methods on Function and
IRBuilder.

Basic blocks have the following methods and attributes:

• replace(old, new)
Replace the instruction old with the other instruction new in this block’s list of instructions. All uses
of old in the whole function are also patched. old and new are Instruction objects.

3.2. User guide 15

https://docs.python.org/3/library/stdtypes.html#bytearray

llvmlite Documentation, Release 0.37.0rc2-dirty

• function
The function this block is defined in.

• is_terminated
Whether this block ends with a terminator instruction.

• terminator
The block’s terminator instruction, if any. Otherwise None.

class llvmlite.ir.BlockAddress
A constant representing an address of a basic block.

Block address constants have the following attributes:

• function
The function in which the basic block is defined.

• basic_block
The basic block. Must be a part of function.

Metadata

There are several kinds of Metadata values.

class llvmlite.ir.MetaDataString(module, value)
A string literal for use in metadata.

• module is the module that the metadata belongs to.

• value is a Python string.

class llvmlite.ir.MDValue
A metadata node. To create an instance, call Module.add_metadata().

class llvmlite.ir.DIValue
A debug information descriptor, containing key-value pairs. To create an instance, call Module.
add_debug_info().

class llvmlite.ir.DIToken(value)
A debug information “token,” representing a well-known enumeration value. value is the enumeration name.

EXAMPLE: 'DW_LANG_Python'

class llvmlite.ir.NamedMetaData
A named metadata node. To create an instance, call Module.add_named_metadata(). NamedMetaData has
the add() method:

add(md)
Append the given piece of metadata to the collection of operands referred to by the NamedMetaData. md
can be either a MetaDataString or a MDValue.

16 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

Global values

Global values are values accessible using a module-wide name.

class llvmlite.ir.GlobalValue
The base class for global values. Global values have the following writable attributes:

• linkage
A Python string describing the linkage behavior of the global value—for example, whether it is visible
from other modules. The default is the empty string, meaning “external.”

• storage_class
A Python string describing the storage class of the global value.

– The default is the empty string, meaning “default.”
– Other possible values include dllimport and dllexport.

class llvmlite.ir.GlobalVariable(module, typ, name, addrspace=0)
A global variable.

• module is where the variable is defined.

• typ is the variable’s type. It cannot be a function type. To declare a global function, use Function.

The type of the returned Value is a pointer to typ. To read the contents of the variable, you need to load()
from the returned Value. To write to the variable, you need to store() to the returned Value.

• name is the variable’s name—a Python string.

• addrspace is an optional address space to store the variable in.

Global variables have the following writable attributes:

• global_constant
– If True, the variable is declared a constant, meaning that its contents cannot be modified.
– The default is False.

• unnamed_addr
– If True, the address of the variable is deemed insignificant, meaning that it is merged with other

variables that have the same initializer.
– The default is False.

• initializer
The variable’s initialization value—probably a Constant of type typ. The default is None, meaning
that the variable is uninitialized.

• align
An explicit alignment in bytes. The default is None, meaning that the default alignment for the vari-
able’s type is used.

class llvmlite.ir.Function(module, typ, name)
A global function.

• module is where the function is defined.

• typ is the function’s type—a FunctionType instance.

• name is the function’s name—a Python string.

If a global function has any basic blocks, it is a Function definition. Otherwise, it is a Function declaration.

Functions have the following methods and attributes:

• append_basic_block(name='')
Append a Basic block to this function’s body.

3.2. User guide 17

llvmlite Documentation, Release 0.37.0rc2-dirty

– If name is not empty, it names the block’s entry Label.
– Returns a new Block .

• insert_basic_block(before, name='')
Similar to append_basic_block(), but inserts it before the basic block before in the function’s list
of basic blocks.

• set_metadata(name, node)
Add a function-specific metadata named name pointing to the given metadata node—an MDValue.

• args
The function’s arguments as a tuple of Argument instances.

• attributes
A set of function attributes. Each optional attribute is a Python string. By default this is empty. Use
the .add() method to add an attribute:

fnty = ir.FunctionType(ir.DoubleType(), (ir.DoubleType(),))
fn = Function(module, fnty, "sqrt")
fn.attributes.add("alwaysinline")

• calling_convention
The function’s calling convention—a Python string. The default is the empty string.

• is_declaration
Indicates whether the global function is a declaration or a definition.

– If True, it is a declaration.
– If False, it is a definition.

Instructions

Every Instruction is also a value:

• It has a name—the recipient’s name.

• It has a well-defined type.

• It can be used as an operand in other instructions or in literals.

Usually, you should not instantiate instruction types directly. Use the helper methods on the IRBuilder class.

class llvmlite.ir.Instruction
The base class for all instructions. Instructions have the following method and attributes:

• set_metadata(name, node)
Add an instruction-specific metadata name pointing to the given metadata node—an MDValue.

• replace_usage(old, new)
Replace the operand old with the other instruction new.

• function
The function that contains this instruction.

• module
The module that defines this instruction’s function.

class llvmlite.ir.PredictableInstr
The class of instructions for which we can specify the probabilities of different outcomes—for example, a switch
or a conditional branch. Predictable instructions have the set_weights() method.

18 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

set_weights(weights)
Set the weights of the instruction’s possible outcomes. weights is a sequence of positive integers, each
corresponding to a different outcome and specifying its relative probability compared to other outcomes.
The greater the number, the likelier the outcome.

class llvmlite.ir.SwitchInstr
A switch instruction. Switch instructions have the add_case() method.

add_case(val, block)
Add a case to the switch instruction.

• val should be a Constant or a Python value compatible with the switch instruction’s operand type.

• block is a Block to jump to if val and the switch operand compare equal.

class llvmlite.ir.IndirectBranch
An indirect branch instruction. Indirect branch instructions have the add_destination() method.

add_destination(value, block)
Add an outgoing edge. The indirect branch instruction must refer to every basic block it can transfer control
to.

class llvmlite.ir.PhiInstr
A phi instruction. Phi instructions have the add_incoming() method.

add_incoming(value, block)
Add an incoming edge. Whenever transfer is controlled from block—a Block—the phi instruction takes
the given value.

class llvmlite.ir.LandingPad
A landing pad. Landing pads have the add_clause() method:

add_clause(value, block)
Add a catch or filter clause. Create catch clauses using CatchClause and filter clauses using
FilterClause.

Landing pad clauses

Landing pads have the following classes associated with them.

class llvmlite.ir.CatchClause(value)
A catch clause. Instructs the personality function to compare the in-flight exception typeinfo with value, which
should have type IntType(8).as_pointer().as_pointer().

class llvmlite.ir.FilterClause(value)
A filter clause. Instructs the personality function to check inclusion of the the in-flight exception typeinfo in
value, which should have type ArrayType(IntType(8).as_pointer().as_pointer(), . . .).

Modules

A module is a compilation unit. It defines a set of related functions, global variables and metadata. In the IR layer, a
module is represented by the Module class.

class llvmlite.ir.Module(name='')
Create a module. For informational purposes, you can specify the optional name, a Python string.

Modules have the following methods and attributes:

3.2. User guide 19

llvmlite Documentation, Release 0.37.0rc2-dirty

• add_debug_info(kind, operands, is_distinct=False)
Add debug information metadata to the module with the given operands—a mapping of string keys to
values—or return a previous equivalent metadata. kind is the name of the debug information kind.

EXAMPLE: 'DICompileUnit'

A DIValue instance is returned. You can then associate it to, for example, an instruction.

EXAMPLE:

di_file = module.add_debug_info("DIFile", {
"filename": "factorial.py",
"directory": "bar",

})
di_compile_unit = module.add_debug_info("DICompileUnit", {

"language": ir.DIToken("DW_LANG_Python"),
"file": di_file,
"producer": "llvmlite x.y",
"runtimeVersion": 2,
"isOptimized": False,

}, is_distinct=True)

• add_global(globalvalue)
Add the given globalvalue—a GlobalValue—to this module. It should have a unique name in the
whole module.

• add_metadata(operands)
Add an unnamed Metadata node to the module with the given operands—a list of metadata-compatible
values. If another metadata node with equal operands already exists in the module, it is reused instead.
Returns an MDValue.

• add_named_metadata(name, element=None)
Return the metadata node with the given name. If it does not already exist, the named metadata node
is created first. If element is not None, it can be a metadata value or a sequence of values to append to
the metadata node’s elements. Returns a NamedMetaData.

EXAMPLE:

module.add_named_metadata("llvm.ident", ["llvmlite/1.0"])

• get_global(name)
Get the Global value—a GlobalValue—with the given name. KeyError is raised if the name does
not exist.

• get_named_metadata(name)
Return the metadata node with the given name. KeyError is raised if the name does not exist.

• get_unique_name(name)
Return a unique name across the whole module. name is the desired name, but a variation can be
returned if it is already in use.

• data_layout
A string representing the data layout in LLVM format.

• functions
The list of functions, as Function instances, declared or defined in the module.

• global_values
An iterable of global values in this module.

20 Chapter 3. API stability

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError

llvmlite Documentation, Release 0.37.0rc2-dirty

• triple
A string representing the target architecture in LLVM “triple” form.

IR builders

• Instantiation

• Attributes

• Utilities

• Positioning

• Flow control helpers

• Instruction building

– Arithmetic

– Conversions

– Comparisons

– Conditional move

– Phi

– Aggregate operations

– Vector operations

– Memory

– Function call

– Branches

– Exception handling

– Inline assembler

– Miscellaneous

IRBuilder is the workhorse of LLVM Intermediate representation (IR) generation. It allows you to fill the basic
blocks of your functions with LLVM instructions.

An IRBuilder internally maintains a current basic block and a pointer inside the block’s list of instructions. When a
new instruction is added, it is inserted at that point, and then the pointer is advanced after the new instruction.

A IRBuilder also maintains a reference to metadata describing the current source location, which is attached to all
inserted instructions.

3.2. User guide 21

llvmlite Documentation, Release 0.37.0rc2-dirty

Instantiation

class llvmlite.ir.IRBuilder(block=None)
Create a new IR builder. If block—a Block—is given, the builder starts at the end of this basic block.

Attributes

IRBuilder has the following attributes:

• IRBuilder.block
The basic block that the builder is operating on.

• IRBuilder.function
The function that the builder is operating on.

• IRBuilder.module
The module that the builder’s function is defined in.

• IRBuilder.debug_metadata
If not None, the metadata that is attached to any inserted instructions as !dbg, unless the instruction already
has !dbg set.

Utilities

IRBuilder.append_basic_block(name='')
Append a basic block, with the given optional name, to the current function. The current block is not changed.
A Block is returned.

Positioning

The following IRBuilder methods help you move the current instruction pointer:

• IRBuilder.position_before(instruction)
Position immediately before the given instruction. The current block is also changed to the instruction’s
basic block.

• IRBuilder.position_after(instruction)
Position immediately after the given instruction. The current block is also changed to the instruction’s basic
block.

• IRBuilder.position_at_start(block)
Position at the start of the basic block.

• IRBuilder.position_at_end(block)
Position at the end of the basic block.

The following context managers allow you to temporarily switch to another basic block and then go back to where you
were.

• IRBuilder.goto_block(block)
Position the builder either at the end of the basic block, if it is not terminated, or just before the block’s
terminator:

22 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

new_block = builder.append_basic_block('foo')
with builder.goto_block(new_block):
Now the builder is at the end of *new_block*
... add instructions

Now the builder has returned to its previous position

• IRBuilder.goto_entry_block()
The same as goto_block(), but with the current function’s entry block.

Flow control helpers

The following context managers make it easier to create conditional code.

• IRBuilder.if_then(pred, likely=None)
Create a basic block whose execution is conditioned on predicate pred, a value of type IntType(1). An-
other basic block is created for instructions after the conditional block. The current basic block is terminated
with a conditional branch based on pred.

When the context manager is entered, the builder positions at the end of the conditional block. When the
context manager is exited, the builder positions at the start of the continuation block.

If likely is not None, it indicates whether pred is likely to be True, and metadata is emitted to specify
branch weights accordingly.

• IRBuilder.if_else(pred, likely=None)
Set up 2 basic blocks whose execution is conditioned on predicate pred, a value of type IntType(1). likely
has the same meaning as in if_then().

A pair of context managers is yielded. Each of them acts as an if_then() context manager—the first for
the block to be executed if pred is True and the second for the block to be executed if pred is False.

When the context manager is exited, the builder is positioned on a new continuation block that both condi-
tional blocks jump into.

Typical use:

with builder.if_else(pred) as (then, otherwise):
with then:

emit instructions for when the predicate is true
with otherwise:

emit instructions for when the predicate is false
emit instructions following the if-else block

Instruction building

The following methods insert a new instruction—an Instruction instance—at the current index in the current block.
The new instruction is returned.

An instruction’s operands are almost always values.

Many of these methods also take an optional name argument, specifying the local name of the result value. If not given,
a unique name is automatically generated.

3.2. User guide 23

llvmlite Documentation, Release 0.37.0rc2-dirty

Arithmetic

In the methods below, the flags argument is an optional sequence of strings that modify the instruction’s semantics.
Examples include the fast-math flags for floating-point operations, and whether wraparound on overflow can be ignored
on integer operations.

Integer

• IRBuilder.shl(lhs, rhs, name='', flags=())
Left-shift lhs by rhs bits.

• IRBuilder.lshr(lhs, rhs, name='', flags=())
Logical right-shift lhs by rhs bits.

• IRBuilder.ashr(lhs, rhs, name='', flags=())
Arithmetic, signed, right-shift lhs by rhs bits.

• IRBuilder.cttz(value, flag)
Counts trailing zero bits in value. Boolean flag indicates whether the result is defined for 0.

• IRBuilder.ctlz(value, flag)
Counts leading zero bits in value. Boolean flag indicates whether the result is defined for 0.

• IRBuilder.add(lhs, rhs, name='', flags=())
Integer add lhs and rhs.

• IRBuilder.sadd_with_overflow(lhs, rhs, name='', flags=())
Integer add lhs and rhs. A { result, overflow bit } structure is returned.

• IRBuilder.sub(lhs, rhs, name='', flags=())
Integer subtract rhs from lhs.

• IRBuilder.ssub_with_overflow(lhs, rhs, name='', flags=())
Integer subtract rhs from lhs. A { result, overflow bit } structure is returned.

• IRBuilder.mul(lhs, rhs, name='', flags=())
Integer multiply lhs with rhs.

• IRBuilder.smul_with_overflow(lhs, rhs, name='', flags=())
Integer multiply lhs with rhs. A { result, overflow bit } structure is returned.

• IRBuilder.sdiv(lhs, rhs, name='', flags=())
Signed integer divide lhs by rhs.

• IRBuilder.udiv(lhs, rhs, name='', flags=())
Unsigned integer divide lhs by rhs.

• IRBuilder.srem(lhs, rhs, name='', flags=())
Signed integer remainder of lhs divided by rhs.

• IRBuilder.urem(lhs, rhs, name='', flags=())
Unsigned integer remainder of lhs divided by rhs.

• IRBuilder.and_(lhs, rhs, name='', flags=())
Bitwise AND lhs with rhs.

• IRBuilder.or_(lhs, rhs, name='', flags=())
Bitwise OR lhs with rhs.

• IRBuilder.xor(lhs, rhs, name='', flags=())
Bitwise XOR lhs with rhs.

24 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

• IRBuilder.not_(value, name='')
Bitwise complement value.

• IRBuilder.neg(value, name='')
Negate value.

Floating-point

• IRBuilder.fadd(lhs, rhs, name='', flags=())
Floating-point add lhs and rhs.

• IRBuilder.fsub(lhs, rhs, name='', flags=())
Floating-point subtract rhs from lhs.

• IRBuilder.fmul(lhs, rhs, name='', flags=())
Floating-point multiply lhs by rhs.

• IRBuilder.fdiv(lhs, rhs, name='', flags=())
Floating-point divide lhs by rhs.

• IRBuilder.frem(lhs, rhs, name='', flags=())
Floating-point remainder of lhs divided by rhs.

• IRBuilder.fneg(arg, name='', flags=())
Floating-point negation of arg.

Conversions

• IRBuilder.trunc(value, typ, name='')
Truncate integer value to integer type typ.

• IRBuilder.zext(value, typ, name='')
Zero-extend integer value to integer type typ.

• IRBuilder.sext(value, typ, name='')
Sign-extend integer value to integer type typ.

• IRBuilder.fptrunc(value, typ, name='')
Truncate—approximate—floating-point value to floating-point type typ.

• IRBuilder.fpext(value, typ, name='')
Extend floating-point value to floating-point type typ.

• IRBuilder.fptosi(value, typ, name='')
Convert floating-point value to signed integer type typ.

• IRBuilder.fptoui(value, typ, name='')
Convert floating-point value to unsigned integer type typ.

• IRBuilder.sitofp(value, typ, name='')
Convert signed integer value to floating-point type typ.

• IRBuilder.uitofp(value, typ, name='')
Convert unsigned integer value to floating-point type typ.

• IRBuilder.ptrtoint(value, typ, name='')
Convert pointer value to integer type typ.

• IRBuilder.inttoptr(value, typ, name='')
Convert integer value to pointer type typ.

3.2. User guide 25

llvmlite Documentation, Release 0.37.0rc2-dirty

• IRBuilder.bitcast(value, typ, name='')
Convert pointer value to pointer type typ.

• IRBuilder.addrspacecast(value, typ, name='')
Convert pointer value to pointer type typ of different address space.

Comparisons

• IRBuilder.icmp_signed(cmpop, lhs, rhs, name='')
Signed integer compare lhs with rhs. The string cmpop can be one of <, <=, ==, !=, >= or >.

• IRBuilder.icmp_unsigned(cmpop, lhs, rhs, name='')
Unsigned integer compare lhs with rhs. The string cmpop can be one of <, <=, ==, !=, >= or >.

• IRBuilder.fcmp_ordered(cmpop, lhs, rhs, name='', flags=[])
Floating-point ordered compare lhs with rhs.

– The string cmpop can be one of <, <=, ==, !=, >=, >, ord or uno.

– The flags list can include any of nnan, ninf, nsz, arcp and fast, which implies all previous flags.

• IRBuilder.fcmp_unordered(cmpop, lhs, rhs, name='', flags=[])
Floating-point unordered compare lhs with rhs.

– The string cmpop, can be one of <, <=, ==, !=, >=, >, ord or uno.

– The flags list can include any of nnan, ninf, nsz, arcp and fast, which implies all previous flags.

Conditional move

IRBuilder.select(cond, lhs, rhs, name='')
A 2-way select—lhs if cond, else rhs.

Phi

IRBuilder.phi(typ, name='')
Create a phi node. To add incoming edges and their values, use the add_incoming() method on the return
value.

Aggregate operations

• IRBuilder.extract_value(agg, index, name='')
Extract the element at index of the aggregate value agg.

– index may be an integer or a sequence of integers.

– Indices must be constant.

• IRBuilder.insert_value(agg, value, index, name='')
Build a copy of aggregate value agg by setting the new value at index. The value for index can be of the
same types as in extract_value().

26 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

Vector operations

• IRBuilder.extract_element(vector, idx, name='')
Returns the value at position idx.

• IRBuilder.insert_element(vector, value, idx, name='')
Returns vector with vector[idx] replaced by value. The result is undefined if the idx is larger or equal
the vector length.

• IRBuilder.shuffle_vector(vector1, vector2, mask, name='')
Constructs a permutation of elements from vector1 and vector2. Returns a new vector in the same length
of mask.

– vector1 and vector2 must have the same element type.

– mask must be a constant vector of integer types.

Memory

• IRBuilder.alloca(typ, size=None, name='')
Statically allocate a stack slot for size values of type typ. If size is not given, a stack slot for 1 value is
allocated.

• IRBuilder.load(ptr, name='', align=None)
Load value from pointer ptr. If align is passed, it should be a Python integer specifying the guaranteed
pointer alignment.

• IRBuilder.store(value, ptr, align=None)
Store value to pointer ptr. If align is passed, it should be a Python integer specifying the guaranteed pointer
alignment.

• IRBuilder.load_atomic(ptr, ordering, align, name='')
Load value from pointer ptr as an atomic operation with the given ordering. align must be a Python integer
specifying the guaranteed pointer alignment.

• IRBuilder.store_atomic(value, ptr, ordering, align)
Store value to pointer ptr as an atomic operation with the given ordering. align must be a Python integer
specifying the guaranteed pointer alignment.

• IRBuilder.gep(ptr, indices, inbounds=False, name='')
The getelementptr instruction. Given a pointer ptr to an aggregate value, compute the address of the inner
element given by the sequence of indices.

• llvmlite.ir.cmpxchg(ptr, cmp, val, ordering, failordering=None, name='')
Atomic compare-and-swap at address ptr.

– cmp is the value to compare the contents with.

– val is the new value to be swapped into.

– Optional ordering and failordering specify the memory model for this instruction.

• llvmlite.ir.atomic_rmw(op, ptr, val, ordering, name='')
Atomic in-memory operation op at address ptr, with operand val.

– The string op specifies the operation—for example, add or sub.

– The optional ordering specifies the memory model for this instruction.

3.2. User guide 27

llvmlite Documentation, Release 0.37.0rc2-dirty

Function call

IRBuilder.call(fn, args, name='', cconv=None, tail=False, fastmath=())
Call function fn with arguments args, a sequence of values.

• cconv is the optional calling convention.

• tail, if True, is a hint for the optimizer to perform tail-call optimization.

• fastmath is a string or a sequence of strings of names for fast-math flags.

Branches

The following methods are all terminators:

• IRBuilder.branch(target)
Unconditional jump to the target, a Block .

• IRBuilder.cbranch(cond, truebr, falsebr)
Conditional jump to either truebr or falsebr—both Block instances—depending on cond, a value of type
IntType(1). This instruction is a PredictableInstr.

• IRBuilder.ret(value)
Return the value from the current function.

• IRBuilder.ret_void()
Return from the current function without a value.

• IRBuilder.switch(value, default)
Switch to different blocks based on the value. default is the block to switch to if no other block is matched.

To add non-default targets, use the add_case() method on the return value.

• IRBuilder.branch_indirect(address)
Jump to the basic block with the address address, a value of type IntType(8).as_pointer().

To obtain a block address, use the BlockAddress constant.

To add all possible jump destinations, use the add_destination() method on the return value.

Exception handling

• IRBuilder.invoke(self, fn, args, normal_to, unwind_to, name='', cconv=None, tail=False)
Call function fn with arguments args, a sequence of values.

– cconv is the optional calling convention.

– tail, if True, is a hint for the optimizer to perform tail-call optimization.

If the function fn returns normally, control is transferred to normal_to. Otherwise, it is transferred to
unwind_to, whose first non-phi instruction must be LandingPad .

• IRBuilder.landingpad(typ, personality, name='', cleanup=False)
Describe which exceptions this basic block can handle.

– typ specifies the return type of the landing pad. It is a structure with 2 pointer-sized fields.

– personality specifies an exception personality function.

– cleanup specifies whether control should always be transferred to this landing pad, even when no
matching exception is caught.

28 Chapter 3. API stability

http://llvm.org/docs/LangRef.html#fast-math-flags

llvmlite Documentation, Release 0.37.0rc2-dirty

To add landing pad clauses, use the add_clause() method on the return value.

There are 2 kinds of landing pad clauses:

– A CatchClause, which specifies a typeinfo for a single exception to be caught. The typeinfo is a value
of type IntType(8).as_pointer().as_pointer();

– A FilterClause, which specifies an array of typeinfos.

Every landing pad must either contain at least 1 clause or be marked for cleanup.

The semantics of a landing pad are entirely determined by the personality function. For details on the
way LLVM handles landing pads in the optimizer, see Exception handling in LLVM. For details on the
implementation of personality functions, see Itanium exception handling ABI.

• IRBuilder.resume(landingpad)
Resume an exception caught by landingpad. Used to indicate that the landing pad did not catch the exception
after all, perhaps because it only performed cleanup.

Inline assembler

• IRBuilder.asm(ftype, asm, constraint, args, side_effect, name='')
Add an inline assembler call instruction. For example, this is used in load_reg() and store_reg().

Arguments:

– ftype is a function type specifying the inputs and output of the inline assembler call.

– asm is the inline assembler snippet—for example, "mov $2, $0\nadd $1, $0". x86 inline ASM
uses the AT&T syntax.

– constraint defines the input/output constraints—for example =r,r,r.

– args is the list of inputs, as IR values.

– side_effect is a boolean that specifies whether or not this instruction has side effects not visible in the
constraint list.

– name is the optional name of the returned LLVM value.

For more information about these parameters, see the official LLVM documentation.

EXAMPLE: Adding 2 64-bit values on x86:

fty = FunctionType(IntType(64), [IntType(64),IntType(64)])
add = builder.asm(fty, "mov $2, $0\nadd $1, $0", "=r,r,r",

(arg_0, arg_1), True, name="asm_add")

• IRBuilder.load_reg(reg_type, reg_name, name='')
Load a register value into an LLVM value.

EXAMPLE: Obtaining the value of the rax register:

builder.load_reg(IntType(64), "rax")

• IRBuilder.store_reg(value, reg_type, reg_name, name='')
Store an LLVM value inside a register.

EXAMPLE: Storing 0xAAAAAAAAAAAAAAAA into the rax register:

builder.store_reg(Constant(IntType(64), 0xAAAAAAAAAAAAAAAA), IntType(64), "rax")

3.2. User guide 29

http://llvm.org/docs/ExceptionHandling.html
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
http://llvm.org/docs/LangRef.html#inline-asm-constraint-string

llvmlite Documentation, Release 0.37.0rc2-dirty

Miscellaneous

• IRBuilder.assume(cond)
Let the LLVM optimizer assume that cond—a value of type IntType(1)—is True.

• IRBuilder.unreachable()
Mark an unreachable point in the code.

Example—defining a simple function

This example defines a function that adds 2 double-precision, floating-point numbers.

"""
This file demonstrates a trivial function "fpadd" returning the sum of
two floating-point numbers.
"""

from llvmlite import ir

Create some useful types
double = ir.DoubleType()
fnty = ir.FunctionType(double, (double, double))

Create an empty module...
module = ir.Module(name=__file__)
and declare a function named "fpadd" inside it
func = ir.Function(module, fnty, name="fpadd")

Now implement the function
block = func.append_basic_block(name="entry")
builder = ir.IRBuilder(block)
a, b = func.args
result = builder.fadd(a, b, name="res")
builder.ret(result)

Print the module IR
print(module)

The generated LLVM intermediate representation is printed at the end:

; ModuleID = "examples/ir_fpadd.py"
target triple = "unknown-unknown-unknown"
target datalayout = ""

define double @"fpadd"(double %".1", double %".2")
{
entry:
%"res" = fadd double %".1", %".2"
ret double %"res"

}

To learn how to compile and execute this function, see LLVM binding layer—llvmlite.binding.

30 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

3.2.2 LLVM binding layer—llvmlite.binding

The llvmlite.bindingmodule provides classes to interact with functionalities of the LLVM library. Generally, they
closely mirror concepts of the C++ API. Only a small subset of the LLVM API is mirrored: those parts that have proven
useful to implement Numba’s JIT compiler.

Initialization and finalization

You only need to call these functions once per process invocation.

• llvmlite.binding.initialize()
Initialize the LLVM core.

• llvmlite.binding.initialize_all_targets()
Initialize all targets. Must be called before targets can be looked up via the Target class.

• llvmlite.binding.initialize_all_asmprinters()
Initialize all code generators. Must be called before generating any assembly or machine code via the
TargetMachine.emit_object() and TargetMachine.emit_assembly() methods.

• llvmlite.binding.initialize_native_target()
Initialize the native—host—target. Must be called once before doing any code generation.

• llvmlite.binding.initialize_native_asmprinter()
Initialize the native assembly printer.

• llvmlite.binding.initialize_native_asmparser()
Initialize the native assembly parser. Must be called for inline assembly to work.

• llvmlite.binding.shutdown()
Shut down the LLVM core.

• llvmlite.binding.llvm_version_info
A 3-integer tuple representing the LLVM version number.

EXAMPLE: (3, 7, 1)

Since LLVM is statically linked into the llvmlite DLL, this is guaranteed to represent the true LLVM
version in use.

Dynamic libraries and symbols

These functions tell LLVM how to resolve external symbols referred from compiled LLVM code.

• llvmlite.binding.add_symbol(name, address)
Register the address of global symbol name, for use from LLVM-compiled functions.

• llvmlite.binding.address_of_symbol(name)
Get the in-process address of symbol name. An integer is returned, or None if the symbol is not found.

• llvmlite.binding.load_library_permanently(filename)
Load an external shared library. filename is the path to the shared library file.

3.2. User guide 31

http://numba.pydata.org/

llvmlite Documentation, Release 0.37.0rc2-dirty

Target information

Target information allows you to inspect and modify aspects of the code generation, such as which CPU is targeted or
what optimization level is desired.

Minimal use of this module would be to create a TargetMachine for later use in code generation.

EXAMPLE:

from llvmlite import binding
target = binding.Target.from_default_triple()
target_machine = target.create_target_machine()

Functions

• llvmlite.binding.get_default_triple()
Return a string representing the default target triple that LLVM is configured to produce code for. This
represents the host’s architecture and platform.

• llvmlite.binding.get_process_triple()
Return a target triple suitable for generating code for the current process.

EXAMPLE: The default triple from get_default_triple() is not suitable when LLVM is compiled for
32-bit, but the process is executing in 64-bit mode.

• llvmlite.binding.get_object_format(triple=None)
Get the object format for the given triple string, or the default triple if None. Returns a string such as "ELF",
"COFF" or "MachO".

• llvmlite.binding.get_host_cpu_name()
Get the name of the host’s CPU as a string. You can use the return value with Target.
create_target_machine().

• llvmlite.binding.get_host_cpu_features()
Return a dictionary-like object indicating the CPU features for the current architecture and whether they
are enabled for this CPU.

The key-value pairs contain the feature name as a string and a boolean indicating whether the feature is
available.

The returned value is an instance of the FeatureMap class, which adds a new method .flatten() for
returning a string suitable for use as the features argument to Target.create_target_machine().

If LLVM has not implemented this feature or it fails to get the information, a RuntimeError exception is
raised.

• llvmlite.binding.create_target_data(data_layout)
Create a TargetData representing the given data_layout string.

32 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

Classes

class llvmlite.binding.TargetData
Provides functionality around a given data layout. It specifies how the different types are to be represented in
memory. Use create_target_data() to instantiate.

• get_abi_size(type)
Get the ABI-mandated size of a TypeRef object. Returns an integer.

• get_pointee_abi_size(type)
Similar to get_abi_size(), but assumes that type is an LLVM pointer type and returns the ABI-
mandated size of the type pointed to. This is useful for a global variable, whose type is really a pointer
to the declared type.

• get_pointee_abi_alignment(type)
Similar to get_pointee_abi_size(), but returns the ABI-mandated alignment rather than the ABI
size.

• get_element_offset(type, position)
Computes the byte offset of the struct element at position.

class llvmlite.binding.Target
Represents a compilation target. The following factories are provided:

• classmethod from_triple(triple)
Create a new Target instance for the given triple string denoting the target platform.

• classmethod from_default_triple()
Create a new Target instance for the default platform that LLVM is configured to produce code for.
This is equivalent to calling Target.from_triple(get_default_triple()).

The following attributes and methods are available:

• description
A description of the target.

• name
The name of the target.

• triple
A string that uniquely identifies the target.

EXAMPLE: "x86_64-pc-linux-gnu"

• create_target_machine(cpu='', features='', opt=2, reloc='default', codemodel='jitdefault')
Create a new TargetMachine instance for this target and with the given options:

– cpu is an optional CPU name to specialize for.
– features is a comma-separated list of target-specific features to enable or disable.
– opt is the optimization level, from 0 to 3.
– reloc is the relocation model.
– codemodel is the code model.

The defaults for reloc and codemodel are appropriate for JIT compilation.

TIP: To list the available CPUs and features for a target, run the command llc -mcpu=help.

class llvmlite.binding.TargetMachine
Holds all the settings necessary for proper code generation, including target information and compiler options.
Instantiate using Target.create_target_machine().

• add_analysis_passes(pm)
Register analysis passes for this target machine with the PassManager instance pm.

3.2. User guide 33

llvmlite Documentation, Release 0.37.0rc2-dirty

• emit_object(module)
Represent the compiled module—a ModuleRef instance—as a code object that is suitable for use with
the platform’s linker. Returns a bytestring.

• set_asm_verbosity(is_verbose)
Set whether this target machine emits assembly with human-readable comments, such as those de-
scribing control flow or debug information.

• emit_assembly(module)
Return a string representing the compiled module’s native assembler. You must first call
initialize_native_asmprinter().

• target_data
The TargetData associated with this target machine.

class llvmlite.binding.FeatureMap
Stores processor feature information in a dictionary-like object. This class extends dict and adds only the .
flatten() method.

flatten(sort=True)
Returns a string representation of the stored information that is suitable for use in the features argument
of Target.create_target_machine().

If the sort keyword argument is True—the default—the features are sorted by name to give a stable
ordering between Python sessions.

Context

LLVMContext is an opaque context reference used to group modules into logical groups. For example, the type names
are unique within a context, the name collisions are resolved by LLVM automatically.

LLVMContextRef

A wrapper around LLVMContext. Should not be instantiated directly, use the following methods:

class LLVMContextRef

• create_context():
Create a new LLVMContext instance.

• get_global_context():
Get the reference to the global context.

Modules

Although they conceptually represent the same thing, modules in the IR layer and modules in the binding layer do not
have the same roles and do not expose the same API.

While modules in the IR layer allow you to build and group functions together, modules in the binding layer give access
to compilation, linking and execution of code. To distinguish between them, the module class in the binding layer is
called ModuleRef as opposed to llvmlite.ir.Module.

To go from the IR layer to the binding layer, use the parse_assembly() function.

34 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

Factory functions

You can create a module from the following factory functions:

• llvmlite.binding.parse_assembly(llvmir, context=None)
Parse the given llvmir, a string containing some LLVM IR code. If parsing is successful, a new ModuleRef
instance is returned.

– context: an instance of LLVMContextRef .

Defaults to the global context.

EXAMPLE: You can obtain llvmir by calling str() on an llvmlite.ir.Module object.

• llvmlite.binding.parse_bitcode(bitcode, context=None)
Parse the given bitcode, a bytestring containing the LLVM bitcode of a module. If parsing is successful, a
new ModuleRef instance is returned.

– context: an instance of LLVMContextRef .

Defaults to the global context.

EXAMPLE: You can obtain the bitcode by calling ModuleRef.as_bitcode().

The ModuleRef class

class llvmlite.binding.ModuleRef
A wrapper around an LLVM module object. The following methods and properties are available:

• as_bitcode()
Return the bitcode of this module as a bytes object.

• get_function(name)
Get the function with the given name in this module.

If found, a ValueRef is returned. Otherwise, NameError is raised.

• get_global_variable(name)
Get the global variable with the given name in this module.

If found, a ValueRef is returned. Otherwise, NameError is raised.

• get_struct_type(name)
Get the struct type with the given name in this module.

If found, a TypeRef is returned. Otherwise, NameError is raised.

• link_in(other, preserve=False)
Link the other module into this module, resolving references wherever possible.

– If preserve is True, the other module is first copied in order to preserve its contents.
– If preserve is False, the other module is not usable after this call.

• verify()
Verify the module’s correctness. On error, raise RuntimeError.

• data_layout
The data layout string for this module. This attribute can be set.

• functions
An iterator over the functions defined in this module. Each function is a ValueRef instance.

3.2. User guide 35

https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/exceptions.html#RuntimeError

llvmlite Documentation, Release 0.37.0rc2-dirty

• global_variables
An iterator over the global variables defined in this module. Each global variable is a ValueRef
instance.

• struct_types
An iterator over the struct types defined in this module. Each type is a TypeRef instance.

• name
The module’s identifier, as a string. This attribute can be set.

• triple
The platform “triple” string for this module. This attribute can be set.

Value references

A value reference is a wrapper around an LLVM value for you to inspect. You cannot create a value reference yourself.
You get them from methods of the ModuleRef and ValueRef classes.

Enumerations

class llvmlite.binding.Linkage
The linkage types allowed for global values are:

• external

• available_externally

• linkonce_any

• linkonce_odr

• linkonce_odr_autohide

• weak_any

• weak_odr

• appending

• internal

• private

• dllimport

• dllexport

• external_weak

• ghost

• common

• linker_private

• linker_private_weak

class llvmlite.binding.Visibility
The visibility styles allowed for global values are:

• default

• hidden

36 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

• protected

class llvmlite.binding.StorageClass
The storage classes allowed for global values are:

• default

• dllimport

• dllexport

The ValueRef class

class llvmlite.binding.ValueRef
A wrapper around an LLVM value. The attributes available are:

• is_declaration
– True—The global value is a mere declaration.
– False—The global value is defined in the given module.

• linkage
The linkage type—a Linkage instance—for this value. This attribute can be set.

• module
The module—a ModuleRef instance—that this value is defined in.

• function
The function—a ValueRef instance—that this value is defined in.

• block
The basic block—a ValueRef instance—that this value is defined in.

• instruction
The instruction—a ValueRef instance—that this value is defined in.

• name
This value’s name, as a string. This attribute can be set.

• type
This value’s LLVM type as TypeRef object.

• storage_class
The storage class—a StorageClass instance—for this value. This attribute can be set.

• visibility
The visibility style—a Visibility instance—for this value. This attribute can be set.

• blocks
An iterator over the basic blocks in this function. Each block is a ValueRef instance.

• arguments
An iterator over the arguments of this function. Each argument is a ValueRef instance.

• instructions
An iterator over the instructions in this basic block. Each instruction is a ValueRef instance.

• operands
An iterator over the operands in this instruction. Each operand is a ValueRef instance.

• opcode
The instruction’s opcode, as a string.

3.2. User guide 37

llvmlite Documentation, Release 0.37.0rc2-dirty

• attributes
An iterator over the attributes in this value. Each attribute is a bytes instance. Values that have
attributes are: function, argument (and others for which attributes support has not been implemented)

• is_global
The value is a global variable.

• is_function
The value is a function.

• is_argument
The value is a function’s argument.

• is_block
The value is a function’s basic block.

• is_instruction
The value is a basic block’s instruction.

• is_operand
The value is a instruction’s operand.

Type references

A type reference wraps an LLVM type. It allows accessing type’s name and IR representation. It is also accepted by
methods like TargetData.get_abi_size().

The TypeRef class

class llvmlite.binding.TypeRef

A wrapper around an LLVM type. The attributes available are:

• llvmlite.binding.name
This type’s name, as a string.

• llvmlite.binding.is_pointer

– True—The type is a pointer type

– False—The type is not a pointer type

• llvmlite.binding.element_type
If the type is a pointer, return the pointed-to type. Raises a ValueError if the type is not a pointer type.

• llvmlite.binding.__str__(self)
Get the string IR representation of the type.

Execution engine

The execution engine is where actual code generation and execution happen. At present a single execution engine,
MCJIT, is exposed.

38 Chapter 3. API stability

https://docs.python.org/3/library/stdtypes.html#bytes

llvmlite Documentation, Release 0.37.0rc2-dirty

Functions

• llvmlite.binding.create_mcjit_compiler(module, target_machine)
Create a MCJIT-powered engine from the given module and target_machine.

– module does not need to contain any code.

– Returns a ExecutionEngine instance.

• llvmlite.binding.check_jit_execution()
Ensure that the system allows creation of executable memory ranges for JIT-compiled code. If some security
mechanism such as SELinux prevents it, an exception is raised. Otherwise the function returns silently.

Calling this function early can help diagnose system configuration issues, instead of letting JIT-compiled
functions crash mysteriously.

The ExecutionEngine class

class llvmlite.binding.ExecutionEngine
A wrapper around an LLVM execution engine. The following methods and properties are available:

• add_module(module)
Add the module—a ModuleRef instance—for code generation. When this method is called, ownership
of the module is transferred to the execution engine.

• finalize_object()
Make sure all modules owned by the execution engine are fully processed and usable for execution.

• get_function_address(name)
Return the address of the function name as an integer. It’s a fatal error in LLVM if the symbol of name
doesn’t exist.

• get_global_value_address(name)
Return the address of the global value name as an integer. It’s a fatal error in LLVM if the symbol of
name doesn’t exist.

• remove_module(module)
Remove the module—a ModuleRef instance—from the modules owned by the execution engine. This
allows releasing the resources owned by the module without destroying the execution engine.

• add_object_file(object_file)
Add the symbols from the specified object file to the execution engine.

– object_file str or ObjectFileRef : a path to the object file or a object file instance. Object file
instance is not usable after this call.

• set_object_cache(notify_func=None, getbuffer_func=None)
Set the object cache callbacks for this engine.

– notify_func, if given, is called whenever the engine has finished compiling a module. It is passed
the (module, buffer) arguments:
∗ module is a ModuleRef instance.
∗ buffer is a bytes object of the code generated for the module.
The return value is ignored.

– getbuffer_func, if given, is called before the engine starts compiling a module. It is passed an
argument, module, a ModuleRef instance of the module being compiled.
∗ It can return None, in which case the module is compiled normally.
∗ It can return a bytes object of native code for the module, which bypasses compilation entirely.

3.2. User guide 39

llvmlite Documentation, Release 0.37.0rc2-dirty

• target_data
The TargetData used by the execution engine.

Object file

The object file is an abstraction of LLVM representation of the static object code files. This class provides methods to ex-
amine the contents of the object files. It also can be passed as parameter to ExecutionEngine.add_object_file()
to make the symbols available to the JIT.

The ObjectFileRef class

class llvmlite.binding.ObjectFileRef
A wrapper around LLVM object file. The following methods and properties are available:

• from_data(data):
Create an instance of ObjectFileRef from the provided binary data.

• from_path(path):
Create an instance of ObjectFileRef from the supplied filesystem path. Raises IOError if the path does
not exist.

• sections:
Return an iterator to the sections objects consisting of the instance of SectionIteratorRef

The SectionIteratorRef class

class llvmlite.binding.SectionIteratorRef
A wrapper around the section class which provides information like
section name, type and size, etc.

• name():
Get section name.

• is_text():
Returns true when section is of type text.

• size():
Get section size.

• address():
Get section address.

• data():
Get section contents.

• is_end(object_file):
Return true if the section iterator is the last element of the object_file.

– object_file: an instance of ObjectFileRef

• next():
Get the next section instance.

40 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

Optimization passes

LLVM gives you the opportunity to fine-tune optimization passes. Optimization passes are managed by a pass manager.
There are 2 kinds of pass managers:

• FunctionPassManager, for optimizations that work on single functions.

• ModulePassManager, for optimizations that work on whole modules.

To instantiate either of these pass managers, you first need to create and configure a PassManagerBuilder.

class llvmlite.binding.PassManagerBuilder

Create a new pass manager builder. This object centralizes optimization settings.

The populate method is available:

populate(pm)
Populate the pass manager pm with the optimization passes configured in this pass manager builder.

The following writable attributes are available:

• disable_unroll_loops
If True, disable loop unrolling.

• inlining_threshold
The integer threshold for inlining one function into another. The higher the number, the more
likely that inlining will occur. This attribute is write-only.

• loop_vectorize
If True, allow vectorizing loops.

• opt_level
The general optimization level, as an integer between 0 and 3.

• size_level
Whether and how much to optimize for size, as an integer between 0 and 2.

• slp_vectorize
If True, enable the SLP vectorizer, which uses a different algorithm than the loop vectorizer. Both
may be enabled at the same time.

class llvmlite.binding.PassManager
The base class for pass managers. Use individual add_* methods or PassManagerBuilder.populate() to
add optimization passes.

• add_constant_merge_pass()
See constmerge pass documentation.

• add_dead_arg_elimination_pass()
See deadargelim pass documentation.

• add_function_attrs_pass()
See functionattrs pass documentation.

• add_function_inlining_pass(self)
See inline pass documentation.

• add_global_dce_pass()
See globaldce pass documentation.

• add_global_optimizer_pass()
See globalopt pass documentation.

3.2. User guide 41

http://llvm.org/docs/Passes.html#constmerge-merge-duplicate-global-constants
http://llvm.org/docs/Passes.html#deadargelim-dead-argument-elimination
http://llvm.org/docs/Passes.html#functionattrs-deduce-function-attributes
http://llvm.org/docs/Passes.html#inline-function-integration-inlining
http://llvm.org/docs/Passes.html#globaldce-dead-global-elimination
http://llvm.org/docs/Passes.html#globalopt-global-variable-optimizer

llvmlite Documentation, Release 0.37.0rc2-dirty

• add_ipsccp_pass()
See ipsccp pass documentation.

• add_dead_code_elimination_pass()
See dce pass documentation.

• add_cfg_simplification_pass()
See simplifycfg pass documentation.

• add_gvn_pass()
See gvn pass documentation.

• add_instruction_combining_pass()
See instcombine pass documentation.

• add_licm_pass()
See licm pass documentation.

• add_sccp_pass()
See sccp pass documentation.

• add_sroa_pass()
See scalarrepl pass documentation.

While the scalarrepl pass documentation describes the transformation performed by the pass added
by this function, the pass corresponds to the opt -sroa command-line option and not to opt
-scalarrepl.

• add_type_based_alias_analysis_pass()
See tbaa metadata documentation.

• add_basic_alias_analysis_pass()
See basicaa pass documentation.

class llvmlite.binding.ModulePassManager
Create a new pass manager to run optimization passes on a module.

The run method is available:

run(module)
Run optimization passes on the module, a ModuleRef instance.

Returns True if the optimizations made any modification to the module. Otherwise returns False.

class llvmlite.binding.FunctionPassManager(module)
Create a new pass manager to run optimization passes on a function of the given module, a ModuleRef instance.

The following methods are available:

• finalize()
Run all the finalizers of the optimization passes.

• initialize()
Run all the initializers of the optimization passes.

• run(function)
Run optimization passes on function, a ValueRef instance.

Returns True if the optimizations made any modification to the module. Otherwise returns False.

42 Chapter 3. API stability

http://llvm.org/docs/Passes.html#ipsccp-interprocedural-sparse-conditional-constant-propagation
http://llvm.org/docs/Passes.html#dce-dead-code-elimination
http://llvm.org/docs/Passes.html#simplifycfg-simplify-the-cfg
http://llvm.org/docs/Passes.html#gvn-global-value-numbering
http://llvm.org/docs/Passes.html#passes-instcombine
http://llvm.org/docs/Passes.html#licm-loop-invariant-code-motion
http://llvm.org/docs/Passes.html#sccp-sparse-conditional-constant-propagation
http://llvm.org/docs/Passes.html#scalarrepl-scalar-replacement-of-aggregates
http://llvm.org/docs/LangRef.html#tbaa-metadata
http://llvm.org/docs/AliasAnalysis.html#the-basicaa-pass

llvmlite Documentation, Release 0.37.0rc2-dirty

Analysis utilities

llvmlite.binding.get_function_cfg(func, show_inst=True)
Return a string of the control-flow graph of the function, in DOT format.

• If func is not a materialized function, the module containing the function is parsed to create an actual LLVM
module.

• The show_inst flag controls whether the instructions of each block are printed.functions.

llvmlite.binding.view_dot_graph(graph, filename=None, view=False)
View the given DOT source. This function requires the graphviz package.

• If view is True, the image is rendered and displayed in the default application in the system. The file path
of the output is returned.

• If view is False, a graphviz.Source object is returned.

• If view is False and the environment is in an IPython session, an IPython image object is returned and can
be displayed inline in the notebook.

Pass Timings

llvmlite.binding.set_time_passes(enable)
Enable or disable the pass timers.

llvmlite.binding.report_and_reset_timings()
Returns the pass timings report and resets the LLVM internal timers.

Pass timers are enabled by set_time_passes(). If the timers are not enabled, this function will return an
empty string.

Misc

llvmlite.binding.ffi.register_lock_callback(acq_fn, rel_fn)
Register callback functions for lock acquire and release. acq_fn and exit_fn are callables that take no argu-
ments.

llvmlite.binding.ffi.unregister_lock_callback(acq_fn, rel_fn)
Remove the registered callback functions for lock acquire and release. The arguments are the same as used in
register_lock_callback().

Example—compiling a simple function

Compile and execute the function defined in ir-fpadd.py. For more information on ir-fpadd.py, see Exam-
ple—Defining a simple function. The function is compiled with no specific optimizations.

from __future__ import print_function

from ctypes import CFUNCTYPE, c_double

import llvmlite.binding as llvm

All these initializations are required for code generation!
llvm.initialize()

(continues on next page)

3.2. User guide 43

llvmlite Documentation, Release 0.37.0rc2-dirty

(continued from previous page)

llvm.initialize_native_target()
llvm.initialize_native_asmprinter() # yes, even this one

llvm_ir = """
; ModuleID = "examples/ir_fpadd.py"
target triple = "unknown-unknown-unknown"
target datalayout = ""

define double @"fpadd"(double %".1", double %".2")
{
entry:
%"res" = fadd double %".1", %".2"
ret double %"res"

}
"""

def create_execution_engine():
"""
Create an ExecutionEngine suitable for JIT code generation on
the host CPU. The engine is reusable for an arbitrary number of
modules.
"""
Create a target machine representing the host
target = llvm.Target.from_default_triple()
target_machine = target.create_target_machine()
And an execution engine with an empty backing module
backing_mod = llvm.parse_assembly("")
engine = llvm.create_mcjit_compiler(backing_mod, target_machine)
return engine

def compile_ir(engine, llvm_ir):
"""
Compile the LLVM IR string with the given engine.
The compiled module object is returned.
"""
Create a LLVM module object from the IR
mod = llvm.parse_assembly(llvm_ir)
mod.verify()
Now add the module and make sure it is ready for execution
engine.add_module(mod)
engine.finalize_object()
engine.run_static_constructors()
return mod

engine = create_execution_engine()
mod = compile_ir(engine, llvm_ir)

Look up the function pointer (a Python int)
func_ptr = engine.get_function_address("fpadd")

(continues on next page)

44 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

(continued from previous page)

Run the function via ctypes
cfunc = CFUNCTYPE(c_double, c_double, c_double)(func_ptr)
res = cfunc(1.0, 3.5)
print("fpadd(...) =", res)

3.2.3 Deprecation Notices

This section contains information about deprecation of behaviours, features and APIs that have become undesir-
able/obsolete. Any information about the schedule for their deprecation and reasoning behind the changes, along with
examples, is provided.

Deprecation of use of memset/memcpy llvm intrinsic with specified alignment

From LLVM 7 onward the memset and memcpy intrinsics dropped the use of an alignment, specified as the third
argument, and instead use the alignment of the first argument for this purpose. Specifying the alignment in third
argument continued to work as LLVM auto-updates this use case.

Reason for deprecation

LLVM has changed the behaviour of the previously mentioned intrinsics, and so as to increase compatibility with future
releases of LLVM, llvmlite is adapting to match.

Example(s) of the impact

As of 0.30 the following worked:

from llvmlite import ir

bit = ir.IntType(1)
int8 = ir.IntType(8)
int32 = ir.IntType(32)
int64 = ir.IntType(64)
int8ptr = int8.as_pointer()

mod = ir.Module()
fnty = ir.FunctionType(int32, ())
func = ir.Function(mod, fnty, "some_function")
block = func.append_basic_block('some_block')
builder = ir.IRBuilder(block)

some_address = int64(0xdeaddead)
dest = builder.bitcast(some_address, int8ptr)
value = int8(0xa5)
memset = mod.declare_intrinsic('llvm.memset', [int8ptr, int32])
memcpy = mod.declare_intrinsic('llvm.memcpy', [int8ptr, int8ptr, int32])

NOTE: 5 argument call site (dest, value, length, align, isvolatile)
builder.call(memset, [dest, value, int32(10), int32(0), bit(0)])

(continues on next page)

3.2. User guide 45

https://releases.llvm.org/7.0.0/docs/LangRef.html#llvm-memset-intrinsics
https://releases.llvm.org/7.0.0/docs/LangRef.html#llvm-memcpy-intrinsic

llvmlite Documentation, Release 0.37.0rc2-dirty

(continued from previous page)

some_other_address = int64(0xcafecafe)
src = builder.bitcast(some_other_address, int8ptr)

NOTE: 5 argument call site (dest, src, length, align, isvolatile)
builder.call(memcpy, [dest, src, int32(10), int32(0), bit(0)])

builder.ret(int32(0))
print(str(mod))

From 0.31 onwards only the following works:

from llvmlite import ir

bit = ir.IntType(1)
int8 = ir.IntType(8)
int32 = ir.IntType(32)
int64 = ir.IntType(64)
int8ptr = int8.as_pointer()

mod = ir.Module()
fnty = ir.FunctionType(int32, ())
func = ir.Function(mod, fnty, "some_function")
block = func.append_basic_block('some_block')
builder = ir.IRBuilder(block)

some_address = int64(0xdeaddead)
dest = builder.bitcast(some_address, int8ptr)
value = int8(0xa5)
memset = mod.declare_intrinsic('llvm.memset', [int8ptr, int32])
memcpy = mod.declare_intrinsic('llvm.memcpy', [int8ptr, int8ptr, int32])

NOTE: 4 argument call site (dest, value, length, isvolatile)
builder.call(memset, [dest, value, int32(10), bit(0)])

some_other_address = int64(0xcafecafe)
src = builder.bitcast(some_other_address, int8ptr)

NOTE: 4 argument call site (dest, src, length, isvolatile)
builder.call(memcpy, [dest, src, int32(10), bit(0)])

builder.ret(int32(0))
print(str(mod))

46 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

Schedule

The feature change was implemented as follows:

• v0.30 was the last release to support an alignment specified as the third argument (5 argument style).

• v0.31 onwards supports the 4 argument style call only.

Recommendations

Projects that need/rely on the deprecated behaviour should pin their dependency on llvmlite to a version prior to removal
of this behaviour.

3.3 Frequently Asked Questions

3.3.1 Why doesn’t llvmlite always support the latest release(s) of LLVM?

There’s a few reasons for this:

1. Most importantly, if llvmlite declares it supports a given version of LLVM, it means that the development team
has verified that the particular LLVM version will work for llvmlite uses, mainly that it works fine for JIT com-
piler projects (like Numba). This testing is extensive and it’s not uncommon to have to patch LLVM in the
process/make decisions about the severity of problems/report problems upstream to LLVM. Ultimately, if the
build is not considered stable across all supported architectures/OS combinations then support is not declared.

2. LLVM sometimes updates its API or internal behaviour and it takes time to work out what needs to be done to
accommodate this on all of llvmlite’s supported architectures/OS combinations.

3. There is a set of patches that ship along with the LLVM builds for llvmlite. These patches are necessary and
often need porting to work on new LLVM versions, this takes time and requires testing. It should be noted that
LLVM builds that come with e.g. linux distributions may not work well with the llvmlite intended use cases.

3.3.2 Why Static Linking to LLVM?

The llvmlite package uses LLVM via ctypes calls to a C wrapper that is statically linked to LLVM. Some people are
surprised that llvmlite uses static linkage to LLVM, but there are several important reasons for this:

1. The LLVM API has not historically been stable across releases - Although things have improved since LLVM
4.0, there are still enough changes between LLVM releases to cause compilation issues if the right version is not
matched with llvmlite.

2. The LLVM shipped by most Linux distributions is not the version llvmlite needs - The release cycles of Linux
distributions will never line up with LLVM or llvmlite releases.

3. We need to patch LLVM - The binary packages of llvmlite are built against LLVM with a handful of patches to
either fix bugs or to add features that have not yet been merged upstream. In some cases, we’ve had to carry
patches for several releases before they make it into LLVM.

4. We don’t need most of LLVM - We are sensitive to the install size of llvmlite, and a full build of LLVM is quite
large. We can dramatically reduce the total disk needed by an llvmlite user (who typically doesn’t need the rest
of LLVM, ignoring the version matching issue) by statically linking to the library and pruning the symbols we
do not need.

3.3. Frequently Asked Questions 47

llvmlite Documentation, Release 0.37.0rc2-dirty

5. Numba can use multiple LLVM builds at once - Some Numba targets (AMD GPU, for example) may require
different LLVM versions or non-mainline forks of LLVM to work. These other LLVMs can be wrapped in a
similar fashion as llvmlite, and will stay isolated.

Static linkage of LLVM was definitely not our goal early in Numba development, but seems to have become the only
workable solution given our constraints.

3.4 Contributing to llvmlite

llvmlite originated to fulfill the needs of the Numba project. It is maintained mostly by the Numba team. We tend to
prioritize the needs and constraints of Numba over other conflicting desires.

We do welcome any contributions in the form of bug reports or pull requests.

• Communication methods

• Development rules

• Documentation

3.4.1 Communication methods

Mailing list

Send email to the Numba users public mailing list at numba-users@anaconda.com. You are welcome to send any
questions about contributing to llvmlite to this mailing list.

You can subscribe and read the archives on Google Groups. The Gmane mirror allows NNTP access.

Bug reports

We use the Github issue tracker to track both bug reports and feature requests. If you report an issue, please include:

• What you are trying to do.

• Your operating system.

• What version of llvmlite you are running.

• A description of the problem—for example, the full error traceback or the unexpected results you are getting.

• As far as possible, a code snippet that allows full reproduction of your problem.

Pull requests

To contribute code:

1. Fork our Github repository.

2. Create a branch representing your work.

3. When your work is ready, submit it as a pull request from the Github interface.

48 Chapter 3. API stability

http://numba.pydata.org/
mailto:numba-users@anaconda.com
https://groups.google.com/a/anaconda.com/forum/#!forum/numba-users
http://news.gmane.org/gmane.comp.python.numba.user
https://github.com/numba/llvmlite/issues
https://github.com/numba/llvmlite

llvmlite Documentation, Release 0.37.0rc2-dirty

3.4.2 Development rules

Coding conventions

• All Python code should follow PEP 8.

• Our C++ code does not have a well-defined coding style.

• Code and documentation should generally fit within 80 columns, for maximum readability with all existing tools,
such as code review user interfaces.

Platform support

Llvmlite will be kept compatible with Python 3.7 and later under at least Windows, macOS and Linux.

We do not expect contributors to test their code on all platforms. Pull requests are automatically built and tested using
Azure Pipelines for Winows, OSX and Linux.

3.4.3 Documentation

This llvmlite documentation is built using Sphinx and maintained in the docs directory inside the llvmlite repository.

1. Edit the source files under docs/source/.

2. Build the documentation:

make html

3. Check the documentation:

open _build/html/index.html

3.5 Release Notes

3.5.1 v0.37.0 RC2 (July 16 2021)

The biggest new feature in this release is LLVM 11 support for all platforms! This is important, because the aarch64
platform had been ‘stuck’ on LLVM 9 for several releases. A special thanks to David Spickett from Linaro for supplying
the relevant patch.

Pull-Requests:

• PR #711: Use conda for readthedocs with Python 3.9 (Antoine Pitrou esc)

• PR #715: LLVM 11.1.0 (Ivan Butygin esc)

• PR #726: Disallow alwaysinline and noinline on functions (Graham Markall)

• PR #730: Don’t export LLVM symbols when linking statically (Chris Burr esc)

• PR #732: Docs/remove travis (esc)

• PR #734: bump llvmdev to 11 (esc)

• PR #736: manylinux llvmdev upgrade to LLVM 11 / manylinux2010 to manylinux2014 upgrade (esc)

• PR #747: Remove 3.6 Support (esc)

3.5. Release Notes 49

https://www.python.org/dev/peps/pep-0008/
https://dev.azure.com/numba/numba/_build?definitionId=2
https://github.com/numba/llvmlite
https://github.com/numba/llvmlite/pull/711
https://github.com/pitrou
https://github.com/esc
https://github.com/numba/llvmlite/pull/715
https://github.com/Hardcode84
https://github.com/esc
https://github.com/numba/llvmlite/pull/726
https://github.com/gmarkall
https://github.com/numba/llvmlite/pull/730
https://github.com/chrisburr
https://github.com/esc
https://github.com/numba/llvmlite/pull/732
https://github.com/esc
https://github.com/numba/llvmlite/pull/734
https://github.com/esc
https://github.com/numba/llvmlite/pull/736
https://github.com/esc
https://github.com/numba/llvmlite/pull/747
https://github.com/esc

llvmlite Documentation, Release 0.37.0rc2-dirty

• PR #748: Fixup readme (esc)

• PR #749: adding PRs specific to the RC2 release (esc)

Total PRs: 10

Authors:

• Ivan Butygin

• Chris Burr

• esc

• Graham Markall

• Antoine Pitrou

• Siu Kwan Lam

• stuartarchibald

Total authors: 7

3.5.2 v0.36.0 (March 11, 2021)

The main feature in this release is Python 3.9 support. Also, some changes to the build scripts were included: the
llvmdev recipe now supports compilation on Windows 10 and llvmlite may now be compiled with cmake on POSIX
systems. Additionally, both the timings from the LLVM passes themselves and the time spent within the LLVM thread-
safe access lock are now available for diagnostic purposes. Lastly, several minor cosmetic changes to the documentation
and project files are included.

Pull requests:

• PR #624: Expose pass timings

• PR #655: Switch encoding to UTF-8 from latin1

• PR #662: Delete requirements.txt

• PR #666: fix rst syntax in install docs

• PR #668: Modify cmake options to work with VS2019

• PR #670: Llvmdev windows 10

• PR #671: Python 3.9 support

• PR #673: use build 2 on windows

• PR #677: Support building with CMake on posix systems

• PR #682: slight rearrangement of intro

• PR #685: Added fneg instruction

• PR #687: Cleanup public CI configuration and badge

• PR #689: fixup azure badge to point at master branch

• PR #690: Callback to track when the llvm lock is acquired and released

• PR #699: adapt Python version clamp from Numba

• PR #701: Improve llvm not found error

Authors:

50 Chapter 3. API stability

https://github.com/numba/llvmlite/pull/748
https://github.com/esc
https://github.com/numba/llvmlite/pull/749
https://github.com/esc
https://github.com/Hardcode84
https://github.com/chrisburr
https://github.com/esc
https://github.com/gmarkall
https://github.com/pitrou
https://github.com/sklam
https://github.com/stuartarchibald

llvmlite Documentation, Release 0.37.0rc2-dirty

• Graham Markall

• John Kirkham

• Peter-Jan Gootzen

• Siu Kwan Lam (core dev)

• Stan Seibert (core dev)

• Stuart Archibald (core dev)

• Uwe L. Korn

• Valentin Haenel (core dev)

• @ARF1

• @abebeos

• @0x5h4un

3.5.3 v0.35.0 (November 30, 2020)

The main feature in this release is a Numba specific LLVM pass for pruning reference-count operations. We plan to
generalize this custom LLVM pass once it is proven stable so that it can be configured for other uses. In addition, this
release contains an updated SVML patch that fixes an issue for AVX512, and a patch that fixes build issues on Linux
and BSD.

Pull requests:

• PR #617: Fix wheel building.

• PR #618: Fix changelog on master

• PR #626: Update SVML patch

• PR #627: Always build with -fPIC on Linux and BSD

• PR #633: Fix Issue #632 - obj file section contents truncated

• PR #634: Implement reference count pruner LLVM pass

• PR #635: Fixes #629: Default to 0 if None is passed as a value for Int32

• PR #637: Fix appveyor

• PR #640: Backport llvm refop pass for LLVM 9.

• PR #641: fix llvmdev build number

• PR #642: pin to correct version of llvmdev

• PR #644: Fix refprune fanout_raise case getting stuck on large graphs

• PR #647: Add support for general attrs on call and loop-rotate pass

Authors:

• Graham Markall

• Ivan Butygin

• NavyaZaveri

• Siu Kwan Lam (core dev)

• Stuart Archibald (core dev)

3.5. Release Notes 51

llvmlite Documentation, Release 0.37.0rc2-dirty

• Valentin Haenel (core dev)

3.5.4 v0.34.0 (August 12, 2020)

This release upgrades to LLVM 10 (10.0.1) for all platforms except aarch64 which will remain at LLVM 9 (9.0.1).

Pull requests:

• PR #596: Use std::make_unique on LLVM 10 (Cherry-Pick via #599)

• PR #606: Revert “Fix CUDA with LLVM9” (Cherry-Pick via #599)

• PR #599: LLVM 10

• PR #598: Fix flake in setup.py

• PR #602: add missing targets to wheels

• PR #614: Fix wheel building

• PR #616: fix release date in changelog

Authors:

• Graham Markall

• Michał Górny

• Siu Kwan Lam (core dev)

• Stuart Archibald (core dev)

• Valentin Haenel (core dev)

3.5.5 v0.33.0 (June 10, 2020)

This release upgrades to LLVM 9 and drops support for older LLVM versions.

Pull requests:

• PR #593: Fix CUDA with LLVM9

• PR #592: Fix meta.yaml

• PR #591: buildscripts: Unpin wheel

• PR #590: add python_requires to setup.py

• PR #582: Adds override for LLVM version check, re-formats docs.

• PR #581: Add FAQ entry on LLVM version support.

• PR #580: Trove classifiers may be out of date.

• PR #577: llvmlite wheel building fixes

• PR #575: Update the release date

• PR #548: Upgrade to LLVM9

• PR #521: Allow instructions to be removed from blocks

Authors:

• Graham Markall

• Jan Vesely

52 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

• Siu Kwan Lam (core dev)

• Stuart Archibald (core dev)

• Tim Babb

• Valentin Haenel (core dev)

3.5.6 v0.32.1 (May 7, 2020)

This is a small patch release that addresses some packaging issues:

Pull requests:

• PR 580: Trove classifiers may be out of date.

• PR 581: Add FAQ entry on LLVM version support.

• PR 582: Adds override for LLVM version check, re-formats docs.

Authors:

• Stuart Archibald (core dev)

• Valentin Haenel (core dev)

3.5.7 v0.32.0 (Apr 16, 2020)

The main changes in this release are the removal of specific code for Python 2 and Python <3.6, and making the code
base PEP8 compliant.

Pull requests:

• PR #577: llvmlite wheel building fixes

• PR #560: ENH: Better error message

• PR #558: update install docs

• PR #556: binding: Allow empty features list

• PR #555: travis: Cleanup

• PR #554: azure-pipelines: Bump VM images.

• PR #552: Add paragraph on installing from sdist and on non-traditional platforms.

• PR #551: Remove python 2, python < 3.6, fix up, add flake8

• PR #549: Miscalled method and missing parameter in the documentation

• PR #547: Permit building on Visual Studio 2017

• PR #543: Update error message in LLVM version check.

• PR #540: update to final release date for 0.31.0

Authors:

• Arik Funke

• Eric Larson

• Jan Vesely

• Shan Sikdar

3.5. Release Notes 53

llvmlite Documentation, Release 0.37.0rc2-dirty

• Siu Kwan Lam (core dev)

• Stan Seibert (core dev)

• Stuart Archibald (core dev)

• Vladislav Hrčka

3.5.8 v0.31.0 (Jan 2, 2020)

This release switches memset/memcpy to use the 4 argument style as per LLVM 7+ and updates some documentation.

Commits:

• PR #485: Revert “Revert “LLVM 7 changed memset intrinsic signature, adjust it””

• PR #520: Begin development of 0.31.0

• PR #528: Add cttz and ctlz to irbuilder docs.

• PR #533: Update deprecation docs with full deprecation of 5 arg memset/memcpy

• PR #535: Update docs to not report LLVM 3.8 as latest!

Authors:

• Isaac Virshup

• Siu Kwan Lam (core dev)

• Stuart Archibald (core dev)

3.5.9 v0.30.0 (Oct 9, 2019)

This release adds support for half-precision float and schedules the deprecation of memset/memcpy accepting 5 argu-
ments (cf. LLVM change).

• PR #518: Fix use of -fPIC flag in wheels

• PR #513: Remove restriction on sphinx version from Anaconda distro

• PR #512: fix for block labels which contain “interesting” characters

• PR #511: Deprecate the use of memset/memcpy with alias

• PR #510: Add fp16 Intrinsics

• PR #509: Add Half-Precision Type

• PR #502: Add -fPIC flag for manylinux1 wheel building

• PR #491: Fix incorrect hierarchy in the documentation for ir.Constant.

• PR #474: Update docs

• PR #470: Fix leak on string returning APIs.

54 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.10 v0.29.0 (May 29, 2019)

This release upgrades to LLVM 8.0 for all supported platforms except PPC64LE. Due to numerous problems with
LLVM 8.0 running on PPC64LE, we have decided to use LLVM 7.1, which is more stable on PPC64LE. In addition,
non-host LLVM targets, AMDGPU, NVPTX, and WebAssembly, are enabled and they are available in our llvmlite
builds.

• PR #484: Revert “LLVM 7 changed memset intrinsic signature, adjust it”

• PR #483: Depend on enum34 using PEP 508 environment markers

• PR #478: Upgrade to llvm8

• PR #469: Support loading from current directory and egg files

• PR #467: Add missing fastmath flags from LLVM 7

• PR #460: LLVM 7 changed memset intrinsic signature, adjust it

3.5.11 v0.28.0 (Mar 12, 2019)

This release adds a number of community contributed features, including support for vector types, as well as atomic
loads and stores.

• PR #322: Adding Vector Type

• PR #389: Add symbols from static object files

• PR #417: Add support for atomic loads/stores

• PR #422: Normalize replace_* behaviour and add docs

• PR #426: Fix pickling of IR functions and add tests

• PR #444: Setup manylinux1 buildscripts and CI

• PR #446: Document need for -p1 argument to patch command

• PR #448: Fix “SyntaxWarning: invalid escape sequence d”

• PR #449: Consolidate the two vector type PRs

• PR #452: Some adjustments to pr426

• PR #454: Truncate long label names when adding label suffix.

• PR #458: Add changelog info about v0.27.1

3.5.12 v0.27.1 (Feb 1, 2019)

Bugfix release for invalid wheel hash for OSX packages. No change to source code.

3.5. Release Notes 55

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.13 v0.27.0 (Dec 28, 2018)

This release updates llvmlite to LLVM 7. Note that LLVM 7.0.0 contains a critical bug that is resolved with a patch
included in the llvmdev conda package recipe. The final release of LLVM 7.0.1 may also resolve the issue.

• PR #434: Add another thread for RPi builds.

• PR #430: llvm lld integration, merge #428

• PR #428: Build LLD as part of the llvmdev package

• PR #413: Set up CI with Azure Pipelines

• PR #412: LLVM 7 support

3.5.14 v0.26.0 (Nov 27, 2018)

The primary new features in this release is support for generation of Intel JIT events, which makes profiling of JIT
compiled code in Intel VTune possible. This release also contains some minor build improvements for ARMv7, and
some small fixes.

LLVM 7 support was originally slated for this release, but had to be delayed after some issues arose in testing. LLVM
6 is still required for llvmlite.

• PR #409: Use native cmake on armv7l

• PR #407: Throttle thread count for llvm build on armv7l.

• PR #403: Add shutdown detection to ObjectRef __del__ method.

• PR #400: conda recipe: add make as build dep

• PR #399: Add get_element_offset to TargetData

• PR #398: Fix gep method call on Constant objects

• PR #395: Fix typo in irbuilder documentation

• PR #394: Enable IntelJIT events for LLVM for VTune support

3.5.15 v0.25.0 (Sep 18, 2018)

This release adds support for the FMA instruction, and has some documentation and build improvements. Starting
with this release, we are including ARMv8 (AArch64) testig in our CI process.

• PR #391: Fix broken win32 py2.7 build.

• PR #387: protect against empty features in list

• PR #384: Read CMAKE_GENERATOR which conda-build sets

• PR #382: rewrite of install instructions, calling out LLVM build challenges

• PR #380: Add FMA intrinsic support

• PR #379: ARM aarch64 test on jetson tx2

• PR #378: add slack, drop flowdock

56 Chapter 3. API stability

https://github.com/numba/llvmlite/tree/69aed71a829e6c552cca24a28c42abdf1efd2363/conda-recipes/llvmdev

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.16 v0.24.0 (Jul 6, 2018)

This release adds support for Python 3.7 and fixes some build issues. It also contains an updated SVML patch for the
llvmdev package that works around some vectorization issues. It also adds a selective LLVM 6.0.1 llvmdev build for
the ppc64le architecture.

• PR #374: Fix up broken patch selector

• PR #373: Add long description from readme

• PR #371: LLVM 6.0.1 build based on RC and fixes for PPC64LE

• PR #369: Recipe fixes for Conda Build 3

• PR #363: Workaround for incorrect vectorization factor computed for SVML functions

• PR #356: fix build on OpenBSD.

• PR #351: Python 3.7 compat: Properly escape repl in re.sub

3.5.17 v0.23.2 (Jun 1, 2018)

This is a bug fix release to assist in addressing a critical Numba issue that can affect users who download llvmlite
packages from sources other than PyPI (pip), Anaconda, or Intel Python: https://github.com/numba/numba/issues/
3006

Support for SVML is now detected at compile time and baked into a function that is exposed by llvmlite. This function
can be queried at runtime to find out if SVML is supported by the LLVM that llvmlite was compiled against, code
generation paths can then be adjusted accordingly.

The following PRs are closed in this release:

• PR #361: Add SVML detection and a function to declare support.

3.5.18 v0.23.1 (May 17, 2018)

This is a minor patch release that includes no code changes. It is issued to fix a couple of problems with the build
recipes for llvmdev (on which llvmlite relies).

The following PRs are closed in this release:

• PR #353: PR Fix llvmdev build recipe.

• PR #348: llvmdev: enhancements to conda recipe

3.5.19 v0.23.0 (Apr 24, 2018)

In this release, we upgrade to LLVM 6. Two LLVM patches are added:

1. A patch to fix LLVM bug (https://bugs.llvm.org/show_bug.cgi?id=37019) that causes undefined behavior during
CFG printing.

2. A patch to enable Intel SVML auto-vectorization of transcendentals.

The following PRs are closed in this release:

• PR #343: Fix undefined behavior bug due to Twine usage in LLVM

• PR #340: This moves llvmlite to use LLVM 6.0.0 as its backend.

• PR #339: Add cttz & ctlz

3.5. Release Notes 57

https://github.com/numba/numba/issues/3006
https://github.com/numba/numba/issues/3006
https://bugs.llvm.org/show_bug.cgi?id=37019

llvmlite Documentation, Release 0.37.0rc2-dirty

• PR #338: Add 3 Bit Manipulation Intrinsics

• PR #330: Add support for LLVM fence instruction

• PR #326: Enable Intel SVML-enabled auto-vectorization for all the transcendentals

3.5.20 v0.22.0 (Feb 15, 2018)

In this release, we have changed the locking strategy that protects LLVM from race conditions. Before, the llvmlite user
(like Numba) was responsible for this locking. Now, llvmlite imposes a global thread lock on all calls into the LLVM
API. This should be significantly less error prone. Future llvmlite releases may manually exempt some functions from
locking once they are determined to be thread-safe.

The following PRs are closed in this release:

• PR#318: Ensuring threadsafety in concurrent usage of LLVM C-API

• PR#221: Add all function/return value attributes from LLVM 3.9

• PR#304: Expose support for static constructors/destructors

3.5.21 v0.21.0 (Dec 6, 2017)

In this release, we upgrade to LLVM 5. Our build scripts now use conda-build 3. For our prebuilt binaries, GCC 7
toolchain is used on unix-like systems and the OSX minimum deployment target is 10.9.

The following PRs are closed in this release:

• PR #315: Updates for conda build 3.

• PR #307: Fixes for LLVM5.

• PR #306: Working towards LLVM 5.0 support.

3.5.22 v0.20.0 (Sep 6, 2017)

Beginning with this minor release, we support wheels for Linux, OSX and Windows. Pull requests related to enabling
wheels are #294, #295, #296 and #297. There are also fixes to the documentation (#283 and #289).

3.5.23 v0.19.0 (Jul 6, 2017)

This is a minor release with the following fixes.

• PR #281, Issue #280: Fix GEP addrspace issue

• PR #279: Fix #274 addrspace in gep

• PR #278: add Readthedocs badge

• PR #275: Add variables to pass through when doing conda-build

• PR #273: Fix the behavior of module.get_global

• PR #272: cmpop contains comparison type, not lhs

• PR #268, Fix #267: Support packed struct

The following are CI build related changes:

• PR #277: Add pass through gcc flags for llvmdev

58 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

• PR #276: Remove jenkins build scripts

3.5.24 v0.18.0 (May 4, 2017)

This is a minor release that fixes several issues (#263, #262, #258, #237) with the wheel build. In addition, we have
minor fixes for running on PPC64LE platforms (#261). And, we added CI testing against PyPy (#253).

3.5.25 v0.17.1 (Apr 12, 2017)

This is a bugfix release that addresses issue #258 that our LLVM binding shared library is missing from the wheel
builds.

3.5.26 v0.17.0 (Apr 9, 2017)

In this release, we are upgrading to LLVM 4.0. We are also starting to provide wheel packages for 64-bit Linux platforms
(manylinux).

Fixes:

• Issue #249, PR #250: Disable static linking of libstdc++ by default.

Enhancements:

• PR #246: Add requirements.txt for pip dependency resolving

• PR #238: LLVM 4.0

• PR #222: Enable wheel builds

3.5.27 v0.16.0 (Feb 16, 2017)

API changes:

• Switched from LLVM 3.8 to 3.9

• TargetData.add_pass is removed in LLVM 3.9.

Enhancements:

• PR #239: Enable fastmath flags

• PR #233: Updates for llvm3.9.1

• PR #199: Update for changes in LLVM 3.9

Fixes:

• PR #236: Fix metadata with long value

• PR #231: Fix setup.py for Python2.7 so that pip auto installs dependencies

• PR #226: Fix get_host_cpu_features() so that it fails properly

3.5. Release Notes 59

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.28 v0.15.0 (Dec 20, 2016)

Enhancements:

• PR #213: Add partial LLVM bindings for ObjectFile.

• PR #215: Add inline assembly helpers in the builder.

• PR #216: Allow specifying alignment in alloca instructions.

• PR #219: Remove unnecessary verify in module linkage.

Fixes:

• PR #209, Issue #208: Fix overly restrictive test for library filenames.

3.5.29 v0.14.0 (Oct 17, 2016)

Enhancements:

• PR #104: Add binding to get and view function control-flow graph.

• PR #210: Improve llvmdev recipe.

• PR #212: Add initializer for the native assembly parser.

3.5.30 v0.13.0 (Aug 24, 2016)

Enhancements:

• PR #176: Switch from LLVM 3.7 to LLVM 3.8.

• PR #191: Allow setting the alignment of a global variable.

• PR #198: Add missing function attributes.

• PR #160: Escape the contents of metadata strings, to allow embedding any characters.

• PR #162: Add support for creating debug information nodes.

• PR #200: Improve the usability of metadata emission APIs.

• PR #200: Allow calling functions with metadata arguments (such as @llvm.dbg.declare).

Fixes:

• PR #190: Suppress optimization remarks printed out in some cases by LLVM.

• PR #200: Allow attaching metadata to a ret instruction.

3.5.31 v0.12.1 (Jul 12, 2016)

New release to fix packages on PyPI. Same as v0.12.0.

60 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.32 v0.12.0 (Jul 6, 2016)

Enhancements:

• PR #179: Let llvmlite build on armv7l Linux.

• PR #161: Allow adding metadata to functions.

• PR #163: Allow emitting fast-math fcmp instructions.

• PR #159: Allow emitting verbose assembly in TargetMachine.

Fixes:

• Issue #177: Make setup.py compatible with pip install.

3.5.33 v0.11.0 (May 19, 2016)

Enhancements:

• PR #175: Check LLVM version at build time

• PR #169: Default initializer for non-external global variable

• PR #168: add ir.Constant.literal_array()

3.5.34 v0.10.0 (Mar 31, 2016)

Enhancements:

• PR #146: Improve setup.py clean to wipe more leftovers.

• PR #135: Remove some llvmpy compatibility APIs.

• PR #151: Always copy TargetData when adding to a pass manager.

• PR #148: Make errors more explicit on loading the binding DLL.

• PR #144: Allow overriding -flto in Linux builds.

• PR #136: Remove Python 2.6 and 3.3 compatibility.

• Issue #131: Allow easier creation of constants by making type instances callable.

• Issue #130: The test suite now ensures the runtime DLL dependencies are within a certain expected set.

• Issue #121: Simplify build process on Unix and remove hardcoded linking with LLVMOProfileJIT.

• Issue #125: Speed up formatting of raw array constants.

Fixes:

• PR #155: Properly emit IR for metadata null.

• PR #153: Remove deprecated uses of TargetMachine::getDataLayout().

• PR #156: Move personality from LandingPadInstr to FunctionAttributes. It was moved in LLVM 3.7.

• PR #149: Implement LLVM scoping correctly.

• PR #141: Ensure no CMakeCache.txt file is included in sdist.

• PR #132: Correct constant in llvmir.py example.

3.5. Release Notes 61

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.35 v0.9.0 (Feb 29, 2016)

Enhancements:

• PR #73: Add get_process_triple() and get_host_cpu_features()

• Switch from LLVM 3.6 to LLVM 3.7. The generated IR for some memory operations has changed.

• Improved performance of IR serialization.

• Issue #116: improve error message when the operands of a binop have differing types.

• PR #113: Let Type.get_abi_{size,alignment} not choke on identified types.

• PR #112: Support non-alphanumeric characters in type names.

Fixes:

• Remove the libcurses dependency on Linux.

3.5.36 v0.8.0 (Oct 23, 2015)

• Update LLVM to 3.6.2

• Add an align parameter to IRBuilder.load() and IRBuilder.store().

• Allow setting visibility, DLL storageclass of ValueRef

• Support profiling with OProfile

3.5.37 v0.7.0 (Aug 31, 2015)

• PR #88: Provide hooks into the MCJIT object cache

• PR #87: Add indirect branches and exception handling APIs to ir.Builder.

• PR #86: Add ir.Builder APIs for integer arithmetic with overflow

• Issue #76: Fix non-Windows builds when LLVM was built using CMake

• Deprecate .get_pointer_to_global() and add .get_function_address() and .get_global_value_address() in Execu-
tionEngine.

3.5.38 v0.6.0 (Jun 30, 2015)

Enhancements:

• Switch from LLVM 3.5 to LLVM 3.6. The generated IR for metadata nodes has slightly changed, and the “old
JIT” engine has been remove (only MCJIT is now available).

• Add an optional flags argument to arithmetic instructions on IRBuilder.

• Support attributes on the return type of a function.

62 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.39 v0.5.1 (Jun 8, 2015)

Fixes:

• Fix implicit termination of basic block in nested if_then()

3.5.40 v0.5.0 (May 27, 2015)

New documentation hosted at http://llvmlite.pydata.org

Enhancements:

• Add code-generation helpers from numba.cgutils

• Support for memset, memcpy, memmove intrinsics

Fixes:

• Fix string encoding problem when round-triping parse_assembly()

3.5.41 v0.4.0 (Mar 30, 2015)

Enhancements:

• Add Module.get_global()

• Renamd Module.global_variables to Module.global_values

• Support loading library parmanently

• Add Type.get_abi_alignment()

Fixes:

• Expose LLVM version as a tuple

Patched LLVM 3.5.1: Updated to 3.5.1 with the same ELF relocation patched for v0.2.2.

3.5.42 v0.2.2 (Jan 29, 2015)

Enhancements:

• Support for addrspacescast

• Support for tail call, calling convention attribute

• Support for IdentifiedStructType

Fixes:

• GEP addrspace propagation

• Various installation process fixes

Patched LLVM 3.5: The binaries from the numba binstar channel use a patched LLVM3.5 for fixing a LLVM ELF
relocation bug that is caused by the use of 32-bit relative offset in 64-bit binaries. The problem appears to occur
more often on hardened kernels, like in CentOS. The patched source code is available at: https://github.com/numba/
llvm-mirror/releases/tag/3.5p1

3.5. Release Notes 63

http://llvmlite.pydata.org
https://github.com/numba/llvm-mirror/releases/tag/3.5p1
https://github.com/numba/llvm-mirror/releases/tag/3.5p1

llvmlite Documentation, Release 0.37.0rc2-dirty

3.5.43 v0.2.0 (Dec 16, 2014)

This is the first official release. It contains a few feature additions and bug fixes. It meets all requirements to replace
llvmpy in numba and numbapro.

3.5.44 v0.1.0 (Nov 13, 2014)

This is the first release. This is released for beta testing llvmlite and numba before the official release.

3.6 Glossary

• Basic block

• Function declaration

• Function definition

• getelementptr

• Global value

• Global variable

• Instruction

• Intermediate representation (IR)

• Label

• Metadata

• Module

• Terminator, terminator instruction

3.6.1 Basic block

A sequence of instructions inside a function. A basic block always starts with a Label and ends with a terminator. No
other instruction inside the basic block can transfer control out of the block.

3.6.2 Function declaration

The specification of a function’s prototype without an associated implementation. A declaration includes the argument
types, return types and other information such as the calling convention. This is like an extern function declaration
in C.

64 Chapter 3. API stability

llvmlite Documentation, Release 0.37.0rc2-dirty

3.6.3 Function definition

A function’s prototype, as in a Function declaration, plus a body implementing the function.

3.6.4 getelementptr

An LLVM Instruction that lets you get the address of a subelement of an aggregate data structure.

See the getelementptr instruction in the official LLVM documentation.

3.6.5 Global value

A named value accessible to all members of a module.

3.6.6 Global variable

A variable whose value is accessible to all members of a module. It is a constant pointer to a module-allocated slot of
the given type.

All global variables are global values. However, the opposite is not true—function declarations and function definitions
are not global variables, they are only global values.

3.6.7 Instruction

The fundamental element used in implementing an LLVM function. LLVM instructions define a procedural, assembly-
like language.

3.6.8 Intermediate representation (IR)

High-level assembly-language code describing to LLVM the program to be compiled to native code.

3.6.9 Label

A branch target inside a function. A label always denotes the start of a Basic block.

3.6.10 Metadata

Optional information associated with LLVM instructions, functions and other code. Metadata provides information
that is not critical to the compiling of an LLVM intermediate representation, such as the likelihood of a condition
branch or the source code location corresponding to a given instruction.

3.6. Glossary 65

https://releases.llvm.org/10.0.0/docs/LangRef.html#i-getelementptr

llvmlite Documentation, Release 0.37.0rc2-dirty

3.6.11 Module

A compilation unit for LLVM intermediate representation. A module can contain any number of function declarations
and definitions, global variables and metadata.

3.6.12 Terminator, terminator instruction

A kind of Instruction that explicitly transfers control to another part of the program instead of going to the next instruc-
tion after it is executed. Examples are branches and function returns.

66 Chapter 3. API stability

PYTHON MODULE INDEX

l
llvmlite.binding, 31
llvmlite.ir, 12

67

llvmlite Documentation, Release 0.37.0rc2-dirty

68 Python Module Index

INDEX

Symbols
__call__() (llvmlite.ir.Type method), 12
__str__() (in module llvmlite.binding), 38

A
add() (llvmlite.ir.IRBuilder method), 24
add() (llvmlite.ir.NamedMetaData method), 16
add_analysis_passes() (llvm-

lite.binding.TargetMachine method), 33
add_attribute() (llvmlite.ir.Argument method), 15
add_case() (llvmlite.ir.SwitchInstr method), 19
add_clause() (llvmlite.ir.LandingPad method), 19
add_debug_info() (llvmlite.ir.Module method), 20
add_destination() (llvmlite.ir.IndirectBranch

method), 19
add_global() (llvmlite.ir.Module method), 20
add_incoming() (llvmlite.ir.PhiInstr method), 19
add_metadata() (llvmlite.ir.Module method), 20
add_module() (llvmlite.binding.ExecutionEngine

method), 39
add_named_metadata() (llvmlite.ir.Module method),

20
add_object_file() (llvmlite.binding.ExecutionEngine

method), 39
add_symbol() (in module llvmlite.binding), 31
address_of_symbol() (in module llvmlite.binding), 31
addrspace (llvmlite.ir.PointerType attribute), 13
addrspacecast() (llvmlite.ir.IRBuilder method), 26
Aggregate (class in llvmlite.ir), 13
align (llvmlite.ir.GlobalVariable attribute), 17
alloca() (llvmlite.ir.IRBuilder method), 27
and_() (llvmlite.ir.IRBuilder method), 24
append_basic_block() (llvmlite.ir.Function method),

17
append_basic_block() (llvmlite.ir.IRBuilder method),

22
args (llvmlite.ir.Function attribute), 18
Argument (class in llvmlite.ir), 15
arguments (llvmlite.binding.ValueRef attribute), 37
ArrayType (class in llvmlite.ir), 13
as_bitcode() (llvmlite.binding.ModuleRef method), 35
as_pointer() (llvmlite.ir.Type method), 12

ashr() (llvmlite.ir.IRBuilder method), 24
asm() (llvmlite.ir.IRBuilder method), 29
assume() (llvmlite.ir.IRBuilder method), 30
atomic_rmw() (in module llvmlite.ir), 27
attributes (llvmlite.binding.ValueRef attribute), 38
attributes (llvmlite.ir.Function attribute), 18

B
basic_block (llvmlite.ir.BlockAddress attribute), 16
bitcast() (llvmlite.ir.Constant method), 15
bitcast() (llvmlite.ir.IRBuilder method), 26
Block (class in llvmlite.ir), 15
block (llvmlite.binding.ValueRef attribute), 37
block (llvmlite.ir.IRBuilder attribute), 22
BlockAddress (class in llvmlite.ir), 16
blocks (llvmlite.binding.ValueRef attribute), 37
branch() (llvmlite.ir.IRBuilder method), 28
branch_indirect() (llvmlite.ir.IRBuilder method), 28

C
call() (llvmlite.ir.IRBuilder method), 28
calling_convention (llvmlite.ir.Function attribute), 18
CatchClause (class in llvmlite.ir), 19
cbranch() (llvmlite.ir.IRBuilder method), 28
check_jit_execution() (in module llvmlite.binding),

39
cmpxchg() (in module llvmlite.ir), 27
Constant (class in llvmlite.ir), 14
create_mcjit_compiler() (in module llvm-

lite.binding), 39
create_target_data() (in module llvmlite.binding),

32
create_target_machine() (llvmlite.binding.Target

method), 33
ctlz() (llvmlite.ir.IRBuilder method), 24
cttz() (llvmlite.ir.IRBuilder method), 24

D
data_layout (llvmlite.binding.ModuleRef attribute), 35
data_layout (llvmlite.ir.Module attribute), 20
debug_metadata (llvmlite.ir.IRBuilder attribute), 22
description (llvmlite.binding.Target attribute), 33

69

llvmlite Documentation, Release 0.37.0rc2-dirty

disable_unroll_loops (llvm-
lite.binding.PassManagerBuilder attribute),
41

DIToken (class in llvmlite.ir), 16
DIValue (class in llvmlite.ir), 16
DoubleType (class in llvmlite.ir), 13

E
element_type (in module llvmlite.binding), 38
elements (llvmlite.ir.Aggregate attribute), 13
emit_assembly() (llvmlite.binding.TargetMachine

method), 34
emit_object() (llvmlite.binding.TargetMachine

method), 34
ExecutionEngine (class in llvmlite.binding), 39
extract_element() (llvmlite.ir.IRBuilder method), 27
extract_value() (llvmlite.ir.IRBuilder method), 26

F
fadd() (llvmlite.ir.IRBuilder method), 25
fcmp_ordered() (llvmlite.ir.IRBuilder method), 26
fcmp_unordered() (llvmlite.ir.IRBuilder method), 26
fdiv() (llvmlite.ir.IRBuilder method), 25
FeatureMap (class in llvmlite.binding), 34
FilterClause (class in llvmlite.ir), 19
finalize() (llvmlite.binding.FunctionPassManager

method), 42
finalize_object() (llvmlite.binding.ExecutionEngine

method), 39
flatten() (llvmlite.binding.FeatureMap method), 34
FloatType (class in llvmlite.ir), 13
fmul() (llvmlite.ir.IRBuilder method), 25
fneg() (llvmlite.ir.IRBuilder method), 25
fpext() (llvmlite.ir.IRBuilder method), 25
fptosi() (llvmlite.ir.IRBuilder method), 25
fptoui() (llvmlite.ir.IRBuilder method), 25
fptrunc() (llvmlite.ir.IRBuilder method), 25
frem() (llvmlite.ir.IRBuilder method), 25
from_default_triple() (llvmlite.binding.Target class

method), 33
from_triple() (llvmlite.binding.Target class method),

33
fsub() (llvmlite.ir.IRBuilder method), 25
Function (class in llvmlite.ir), 17
function (llvmlite.binding.ValueRef attribute), 37
function (llvmlite.ir.Block attribute), 16
function (llvmlite.ir.BlockAddress attribute), 16
function (llvmlite.ir.Instruction attribute), 18
function (llvmlite.ir.IRBuilder attribute), 22
FunctionPassManager (class in llvmlite.binding), 42
functions (llvmlite.binding.ModuleRef attribute), 35
functions (llvmlite.ir.Module attribute), 20
FunctionType (class in llvmlite.ir), 14

G
gep() (llvmlite.ir.Constant method), 15
gep() (llvmlite.ir.IRBuilder method), 27
get_abi_alignment() (llvmlite.ir.Type method), 12
get_abi_size() (llvmlite.binding.TargetData method),

33
get_abi_size() (llvmlite.ir.Type method), 12
get_default_triple() (in module llvmlite.binding),

32
get_element_offset() (llvmlite.binding.TargetData

method), 33
get_function() (llvmlite.binding.ModuleRef method),

35
get_function_address() (llvm-

lite.binding.ExecutionEngine method), 39
get_function_cfg() (in module llvmlite.binding), 43
get_global() (llvmlite.ir.Module method), 20
get_global_value_address() (llvm-

lite.binding.ExecutionEngine method), 39
get_global_variable() (llvmlite.binding.ModuleRef

method), 35
get_host_cpu_features() (in module llvm-

lite.binding), 32
get_host_cpu_name() (in module llvmlite.binding), 32
get_named_metadata() (llvmlite.ir.Module method),

20
get_object_format() (in module llvmlite.binding), 32
get_pointee_abi_alignment() (llvm-

lite.binding.TargetData method), 33
get_pointee_abi_size() (llvm-

lite.binding.TargetData method), 33
get_process_triple() (in module llvmlite.binding),

32
get_struct_type() (llvmlite.binding.ModuleRef

method), 35
get_unique_name() (llvmlite.ir.Module method), 20
global_constant (llvmlite.ir.GlobalVariable attribute),

17
global_values (llvmlite.ir.Module attribute), 20
global_variables (llvmlite.binding.ModuleRef at-

tribute), 36
GlobalValue (class in llvmlite.ir), 17
GlobalVariable (class in llvmlite.ir), 17
goto_block() (llvmlite.ir.IRBuilder method), 22
goto_entry_block() (llvmlite.ir.IRBuilder method), 23

H
HalfType (class in llvmlite.ir), 13

I
icmp_signed() (llvmlite.ir.IRBuilder method), 26
icmp_unsigned() (llvmlite.ir.IRBuilder method), 26
IdentifiedStructType (class in llvmlite.ir), 13

70 Index

llvmlite Documentation, Release 0.37.0rc2-dirty

if_else() (llvmlite.ir.IRBuilder method), 23
if_then() (llvmlite.ir.IRBuilder method), 23
IndirectBranch (class in llvmlite.ir), 19
initialize() (in module llvmlite.binding), 31
initialize() (llvmlite.binding.FunctionPassManager

method), 42
initialize_all_asmprinters() (in module llvm-

lite.binding), 31
initialize_all_targets() (in module llvm-

lite.binding), 31
initialize_native_asmparser() (in module llvm-

lite.binding), 31
initialize_native_asmprinter() (in module llvm-

lite.binding), 31
initialize_native_target() (in module llvm-

lite.binding), 31
initializer (llvmlite.ir.GlobalVariable attribute), 17
inlining_threshold (llvm-

lite.binding.PassManagerBuilder attribute),
41

insert_basic_block() (llvmlite.ir.Function method),
18

insert_element() (llvmlite.ir.IRBuilder method), 27
insert_value() (llvmlite.ir.IRBuilder method), 26
Instruction (class in llvmlite.ir), 18
instruction (llvmlite.binding.ValueRef attribute), 37
instructions (llvmlite.binding.ValueRef attribute), 37
inttoptr() (llvmlite.ir.Constant method), 15
inttoptr() (llvmlite.ir.IRBuilder method), 25
IntType (class in llvmlite.ir), 13
invoke() (llvmlite.ir.IRBuilder method), 28
IRBuilder (class in llvmlite.ir), 22
is_argument (llvmlite.binding.ValueRef attribute), 38
is_block (llvmlite.binding.ValueRef attribute), 38
is_declaration (llvmlite.binding.ValueRef attribute),

37
is_declaration (llvmlite.ir.Function attribute), 18
is_function (llvmlite.binding.ValueRef attribute), 38
is_global (llvmlite.binding.ValueRef attribute), 38
is_instruction (llvmlite.binding.ValueRef attribute),

38
is_operand (llvmlite.binding.ValueRef attribute), 38
is_pointer (in module llvmlite.binding), 38
is_terminated (llvmlite.ir.Block attribute), 16

L
LabelType (class in llvmlite.ir), 14
LandingPad (class in llvmlite.ir), 19
landingpad() (llvmlite.ir.IRBuilder method), 28
link_in() (llvmlite.binding.ModuleRef method), 35
Linkage (class in llvmlite.binding), 36
linkage (llvmlite.binding.ValueRef attribute), 37
linkage (llvmlite.ir.GlobalValue attribute), 17
Linkage.appending (in module llvmlite.binding), 36

Linkage.available_externally (in module llvm-
lite.binding), 36

Linkage.common (in module llvmlite.binding), 36
Linkage.dllexport (in module llvmlite.binding), 36
Linkage.dllimport (in module llvmlite.binding), 36
Linkage.external (in module llvmlite.binding), 36
Linkage.external_weak (in module llvmlite.binding),

36
Linkage.ghost (in module llvmlite.binding), 36
Linkage.internal (in module llvmlite.binding), 36
Linkage.linker_private (in module llvmlite.binding),

36
Linkage.linker_private_weak (in module llvm-

lite.binding), 36
Linkage.linkonce_any (in module llvmlite.binding),

36
Linkage.linkonce_odr (in module llvmlite.binding),

36
Linkage.linkonce_odr_autohide (in module llvm-

lite.binding), 36
Linkage.private (in module llvmlite.binding), 36
Linkage.weak_any (in module llvmlite.binding), 36
Linkage.weak_odr (in module llvmlite.binding), 36
literal_array() (llvmlite.ir.Constant class method),

15
literal_struct() (llvmlite.ir.Constant class method),

15
LiteralStructType (class in llvmlite.ir), 13
llvm_version_info (in module llvmlite.binding), 31
LLVMContextRef (built-in class), 34
llvmlite.binding

module, 31
llvmlite.ir

module, 12
load() (llvmlite.ir.IRBuilder method), 27
load_atomic() (llvmlite.ir.IRBuilder method), 27
load_library_permanently() (in module llvm-

lite.binding), 31
load_reg() (llvmlite.ir.IRBuilder method), 29
loop_vectorize (llvmlite.binding.PassManagerBuilder

attribute), 41
lshr() (llvmlite.ir.IRBuilder method), 24

M
MDValue (class in llvmlite.ir), 16
MetaDataString (class in llvmlite.ir), 16
MetaDataType (class in llvmlite.ir), 14
module

llvmlite.binding, 31
llvmlite.ir, 12

Module (class in llvmlite.ir), 19
module (llvmlite.binding.ValueRef attribute), 37
module (llvmlite.ir.Instruction attribute), 18
module (llvmlite.ir.IRBuilder attribute), 22

Index 71

llvmlite Documentation, Release 0.37.0rc2-dirty

ModulePassManager (class in llvmlite.binding), 42
ModuleRef (class in llvmlite.binding), 35
mul() (llvmlite.ir.IRBuilder method), 24

N
name (in module llvmlite.binding), 38
name (llvmlite.binding.ModuleRef attribute), 36
name (llvmlite.binding.Target attribute), 33
name (llvmlite.binding.ValueRef attribute), 37
NamedMetaData (class in llvmlite.ir), 16
neg() (llvmlite.ir.IRBuilder method), 25
not_() (llvmlite.ir.IRBuilder method), 25

O
ObjectFileRef (class in llvmlite.binding), 40
opcode (llvmlite.binding.ValueRef attribute), 37
operands (llvmlite.binding.ValueRef attribute), 37
opt_level (llvmlite.binding.PassManagerBuilder

attribute), 41
or_() (llvmlite.ir.IRBuilder method), 24

P
parse_assembly() (in module llvmlite.binding), 35
parse_bitcode() (in module llvmlite.binding), 35
PassManager (class in llvmlite.binding), 41
PassManager.add_basic_alias_analysis_pass()

(in module llvmlite.binding), 42
PassManager.add_cfg_simplification_pass() (in

module llvmlite.binding), 42
PassManager.add_constant_merge_pass() (in mod-

ule llvmlite.binding), 41
PassManager.add_dead_arg_elimination_pass()

(in module llvmlite.binding), 41
PassManager.add_dead_code_elimination_pass()

(in module llvmlite.binding), 42
PassManager.add_function_attrs_pass() (in mod-

ule llvmlite.binding), 41
PassManager.add_function_inlining_pass() (in

module llvmlite.binding), 41
PassManager.add_global_dce_pass() (in module

llvmlite.binding), 41
PassManager.add_global_optimizer_pass() (in

module llvmlite.binding), 41
PassManager.add_gvn_pass() (in module llvm-

lite.binding), 42
PassManager.add_instruction_combining_pass()

(in module llvmlite.binding), 42
PassManager.add_ipsccp_pass() (in module llvm-

lite.binding), 42
PassManager.add_licm_pass() (in module llvm-

lite.binding), 42
PassManager.add_sccp_pass() (in module llvm-

lite.binding), 42

PassManager.add_sroa_pass() (in module llvm-
lite.binding), 42

PassManager.add_type_based_alias_analysis_pass()
(in module llvmlite.binding), 42

PassManagerBuilder (class in llvmlite.binding), 41
phi() (llvmlite.ir.IRBuilder method), 26
PhiInstr (class in llvmlite.ir), 19
pointee (llvmlite.ir.PointerType attribute), 13
PointerType (class in llvmlite.ir), 13
populate() (llvmlite.binding.PassManagerBuilder

method), 41
position_after() (llvmlite.ir.IRBuilder method), 22
position_at_end() (llvmlite.ir.IRBuilder method), 22
position_at_start() (llvmlite.ir.IRBuilder method),

22
position_before() (llvmlite.ir.IRBuilder method), 22
PredictableInstr (class in llvmlite.ir), 18
ptrtoint() (llvmlite.ir.IRBuilder method), 25

R
register_lock_callback() (in module llvm-

lite.binding.ffi), 43
remove_module() (llvmlite.binding.ExecutionEngine

method), 39
replace() (llvmlite.ir.Block method), 15
replace_usage() (llvmlite.ir.Instruction method), 18
report_and_reset_timings() (in module llvm-

lite.binding), 43
resume() (llvmlite.ir.IRBuilder method), 29
ret() (llvmlite.ir.IRBuilder method), 28
ret_void() (llvmlite.ir.IRBuilder method), 28
run() (llvmlite.binding.FunctionPassManager method),

42
run() (llvmlite.binding.ModulePassManager method),

42

S
sadd_with_overflow() (llvmlite.ir.IRBuilder method),

24
sdiv() (llvmlite.ir.IRBuilder method), 24
SectionIteratorRef (class in llvmlite.binding), 40
select() (llvmlite.ir.IRBuilder method), 26
set_asm_verbosity() (llvmlite.binding.TargetMachine

method), 34
set_body() (llvmlite.ir.IdentifiedStructType method), 14
set_metadata() (llvmlite.ir.Function method), 18
set_metadata() (llvmlite.ir.Instruction method), 18
set_object_cache() (llvm-

lite.binding.ExecutionEngine method), 39
set_time_passes() (in module llvmlite.binding), 43
set_weights() (llvmlite.ir.PredictableInstr method), 18
sext() (llvmlite.ir.IRBuilder method), 25
shl() (llvmlite.ir.IRBuilder method), 24
shuffle_vector() (llvmlite.ir.IRBuilder method), 27

72 Index

llvmlite Documentation, Release 0.37.0rc2-dirty

shutdown() (in module llvmlite.binding), 31
sitofp() (llvmlite.ir.IRBuilder method), 25
size_level (llvmlite.binding.PassManagerBuilder at-

tribute), 41
slp_vectorize (llvmlite.binding.PassManagerBuilder

attribute), 41
smul_with_overflow() (llvmlite.ir.IRBuilder method),

24
srem() (llvmlite.ir.IRBuilder method), 24
ssub_with_overflow() (llvmlite.ir.IRBuilder method),

24
storage_class (llvmlite.binding.ValueRef attribute), 37
storage_class (llvmlite.ir.GlobalValue attribute), 17
StorageClass (class in llvmlite.binding), 37
StorageClass.default (in module llvmlite.binding),

37
StorageClass.dllexport (in module llvmlite.binding),

37
StorageClass.dllimport (in module llvmlite.binding),

37
store() (llvmlite.ir.IRBuilder method), 27
store_atomic() (llvmlite.ir.IRBuilder method), 27
store_reg() (llvmlite.ir.IRBuilder method), 29
struct_types (llvmlite.binding.ModuleRef attribute),

36
sub() (llvmlite.ir.IRBuilder method), 24
switch() (llvmlite.ir.IRBuilder method), 28
SwitchInstr (class in llvmlite.ir), 19

T
Target (class in llvmlite.binding), 33
target_data (llvmlite.binding.ExecutionEngine at-

tribute), 40
target_data (llvmlite.binding.TargetMachine attribute),

34
TargetData (class in llvmlite.binding), 33
TargetMachine (class in llvmlite.binding), 33
terminator (llvmlite.ir.Block attribute), 16
triple (llvmlite.binding.ModuleRef attribute), 36
triple (llvmlite.binding.Target attribute), 33
triple (llvmlite.ir.Module attribute), 21
trunc() (llvmlite.ir.IRBuilder method), 25
Type (class in llvmlite.ir), 12
type (llvmlite.binding.ValueRef attribute), 37
TypeRef (class in llvmlite.binding), 38

U
udiv() (llvmlite.ir.IRBuilder method), 24
uitofp() (llvmlite.ir.IRBuilder method), 25
Undefined (in module llvmlite.ir), 14
unnamed_addr (llvmlite.ir.GlobalVariable attribute), 17
unreachable() (llvmlite.ir.IRBuilder method), 30
unregister_lock_callback() (in module llvm-

lite.binding.ffi), 43

urem() (llvmlite.ir.IRBuilder method), 24

V
Value (class in llvmlite.ir), 14
ValueRef (class in llvmlite.binding), 37
VectorType (class in llvmlite.ir), 13
verify() (llvmlite.binding.ModuleRef method), 35
view_dot_graph() (in module llvmlite.binding), 43
Visibility (class in llvmlite.binding), 36
visibility (llvmlite.binding.ValueRef attribute), 37
Visibility.default (in module llvmlite.binding), 36
Visibility.hidden (in module llvmlite.binding), 36
Visibility.protected (in module llvmlite.binding),

37
VoidType (class in llvmlite.ir), 13

W
width (llvmlite.ir.IntType attribute), 13

X
xor() (llvmlite.ir.IRBuilder method), 24

Z
zext() (llvmlite.ir.IRBuilder method), 25

Index 73

	Philosophy
	LLVM compatibility
	API stability
	Installation
	Pre-built binaries
	Conda packages:
	Using pip
	How this ends up being a problem.
	Things to “fix” it…
	What to be aware of when using a system provided LLVM package.

	Building manually
	Prerequisites
	Compiling LLVM
	Compiling llvmlite
	Installing
	Installing from sdist

	User guide
	IR layer—llvmlite.ir
	Types
	Atomic types
	Aggregate types
	Other types

	Values
	Metadata
	Global values
	Instructions
	Landing pad clauses

	Modules
	IR builders
	Instantiation
	Attributes
	Utilities
	Positioning
	Flow control helpers
	Instruction building
	Arithmetic
	Integer
	Floating-point
	Conversions
	Comparisons
	Conditional move
	Phi
	Aggregate operations
	Vector operations
	Memory
	Function call
	Branches
	Exception handling
	Inline assembler
	Miscellaneous

	Example—defining a simple function

	LLVM binding layer—llvmlite.binding
	Initialization and finalization
	Dynamic libraries and symbols
	Target information
	Functions
	Classes

	Context
	LLVMContextRef

	Modules
	Factory functions
	The ModuleRef class

	Value references
	Enumerations
	The ValueRef class

	Type references
	The TypeRef class

	Execution engine
	Functions
	The ExecutionEngine class

	Object file
	The ObjectFileRef class
	The SectionIteratorRef class

	Optimization passes
	Analysis utilities
	Pass Timings
	Misc
	Example—compiling a simple function

	Deprecation Notices
	Deprecation of use of memset/memcpy llvm intrinsic with specified alignment
	Reason for deprecation
	Example(s) of the impact
	Schedule
	Recommendations

	Frequently Asked Questions
	Why doesn’t llvmlite always support the latest release(s) of LLVM?
	Why Static Linking to LLVM?

	Contributing to llvmlite
	Communication methods
	Mailing list
	Bug reports
	Pull requests

	Development rules
	Coding conventions
	Platform support

	Documentation

	Release Notes
	v0.37.0 RC2 (July 16 2021)
	v0.36.0 (March 11, 2021)
	v0.35.0 (November 30, 2020)
	v0.34.0 (August 12, 2020)
	v0.33.0 (June 10, 2020)
	v0.32.1 (May 7, 2020)
	v0.32.0 (Apr 16, 2020)
	v0.31.0 (Jan 2, 2020)
	v0.30.0 (Oct 9, 2019)
	v0.29.0 (May 29, 2019)
	v0.28.0 (Mar 12, 2019)
	v0.27.1 (Feb 1, 2019)
	v0.27.0 (Dec 28, 2018)
	v0.26.0 (Nov 27, 2018)
	v0.25.0 (Sep 18, 2018)
	v0.24.0 (Jul 6, 2018)
	v0.23.2 (Jun 1, 2018)
	v0.23.1 (May 17, 2018)
	v0.23.0 (Apr 24, 2018)
	v0.22.0 (Feb 15, 2018)
	v0.21.0 (Dec 6, 2017)
	v0.20.0 (Sep 6, 2017)
	v0.19.0 (Jul 6, 2017)
	v0.18.0 (May 4, 2017)
	v0.17.1 (Apr 12, 2017)
	v0.17.0 (Apr 9, 2017)
	v0.16.0 (Feb 16, 2017)
	v0.15.0 (Dec 20, 2016)
	v0.14.0 (Oct 17, 2016)
	v0.13.0 (Aug 24, 2016)
	v0.12.1 (Jul 12, 2016)
	v0.12.0 (Jul 6, 2016)
	v0.11.0 (May 19, 2016)
	v0.10.0 (Mar 31, 2016)
	v0.9.0 (Feb 29, 2016)
	v0.8.0 (Oct 23, 2015)
	v0.7.0 (Aug 31, 2015)
	v0.6.0 (Jun 30, 2015)
	v0.5.1 (Jun 8, 2015)
	v0.5.0 (May 27, 2015)
	v0.4.0 (Mar 30, 2015)
	v0.2.2 (Jan 29, 2015)
	v0.2.0 (Dec 16, 2014)
	v0.1.0 (Nov 13, 2014)

	Glossary
	Basic block
	Function declaration
	Function definition
	getelementptr
	Global value
	Global variable
	Instruction
	Intermediate representation (IR)
	Label
	Metadata
	Module
	Terminator, terminator instruction

	Python Module Index
	Index

